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Université de Nantes, GeM
Univ Gustave Eiffel, campus de Nantes, IFSTTAR, GERS-GeoEND

GIS ECND-PdL webinar
June 22, 2022

1 / 17

Matthieu Gallezot Elastic wave propagation in spheres



Introduction Numerical model Numerical results Conclusion

Outline

1 Introduction

2 Numerical model

3 Numerical results

4 Conclusion

2 / 17

Matthieu Gallezot Elastic wave propagation in spheres



Introduction Numerical model Numerical results Conclusion

Goal

Whispering gallery waves:

Optics: well-known, modes confined near surface+equator, high quality factor

Elasticity: analogy? differences?

→ Let us compute the resonances (vibration modes) of a buried elastic sphere...

M

r

Issues:

efficient high-frequency model: no full 3D, no full analytical (unstable)1 → 1D

semi-analytical FE model

1
V. Dubrovskiy and V. Morochnik (1981), Izv. Earth Phys 17
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Goal

Whispering gallery waves:

Optics: well-known, modes confined near surface+equator, high quality factor

Elasticity: analogy? differences?

→ Let us compute the resonances (vibration modes) of a buried elastic sphere...

M

r

Issues:

efficient high-frequency model: no full 3D, no full analytical (unstable)1 → 1D

semi-analytical FE model

resonances of open systems: unbounded problem, leaky resonances (’improper’
modes growing at infinity2) → Perfectly Matched Layer truncation (PML)

1
V. Dubrovskiy and V. Morochnik (1981), Izv. Earth Phys 17

2
P. Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin (2018), Laser & Photonics Reviews 12 ; M. Mansuripur, M. Kolesik,

and P. Jakobsen (2017), Phys. Rev. A 96 (1) ; M. Gallezot (2018), PhD thesis, Ecole Centrale Nantes
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Weak form of the elastodynamic problem truncated with a radial PML

Weak form of elastodynamics in spherical coordinates:

∫

Ṽ

δǫ̃Tσ̃dṼ − ω2

∫

Ṽ

ρ̃δũT
ũdṼ =

∫

Ṽ

δũT
f̃ dṼ +

∫

∂Ṽ

δũT
t̃d∂Ṽ (1)

ũ(r , θ, φ) =
[

ũr (r̃ , θ, φ), ũθ(r̃ , θ, φ), uφ(r̃ , θ, φ)
]T

, dṼ = r̃2 sin θdr̃dθdφ

ǫ̃ = L̃ũ where L̃ = Lr
∂
∂ r̃

+ Lθ
∂

r̃∂θ
+ Lφ

∂
r̃ sin θ∂φ

+ 1
r̃
L1 +

cot θ
r̃

L2

r̃ 7→ r i.e. g̃(r̃) = g(r), ∂g̃/∂ r̃ = ∂g/(γ(r)∂r), dr̃ = γ(r)dr

assumption: transverse isotropic materials

Truncature with a radial PML

PML ≡ analytic continuationa of the radial coordinate

r̃(r) =

∫ r

0
γ(ξ)dξ, (2)

with the attenuation function

γ(r) = 1 if r < d,

Im γ(r) > 0 if d < r < d + h.

a
W. C. Chew and W. H. Weedon (1994), Microwave and Optical Technology Letters 7
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Analytical description of the angular behaviour (θ, φ)

The angular and radial variables can be separated:

u(r , θ, φ) =
∑

l≥0

∑

|m|≤l

S
m
l (θ, φ)ûm

l (r) (3)

A. C. Eringen and E. S. Şuhubi (1975), vol. II, Academic Press ; E. Kausel (2006), Cambridge University Press

Matrix of vector spherical harmonics

S
m
l (θ, φ) =







Ym
l
(θ, φ) 0 0

0
∂Ym

l (θ,φ)

∂θ
−

∂Ym
l (θ,φ)

sin θ∂φ

0
∂Ym

l (θ,φ)

sin θ∂φ

∂Ym
l (θ,φ)

∂θ






. (4)

with the scalar spherical harmonics

Ym
l (θ, φ) =

√

(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cos θ)ejmφ, l ∈ N, |m| ≤ l . (5)

Pm
l
(cos θ): associated Legendre polynomial, (l ,m): polar and azimuthal wavenumbers

Finite element discretization of the radial coordinate:

û
m,e
l

(r) = N
e(r)Ûm,e

l
, δuT(r , θ, φ) = δÛeT

N
eT(r)Sp∗

k
(θ, φ) (6)
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Angular integration of the weak formulation

Angular integration strategies:
1 Numerical integration (P. Heyliger and A Jilani (1992), International Journal of Solids and Structures 29)
2 Manual integration for a specific choice of interpolation function (J. Park (2002),

PhD thesis, Massachusetts Institute of Technology)
3 Use orthogonality relations of Spherical Harmonics thanks to the choice of δu
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Angular integration of the weak formulation

Angular integration strategies:

3 Use orthogonality relations of Spherical Harmonics thanks to the choice of δu

Orthogonality

“Classical” orthogonality of vector SH (E. Kausel (2006), Cambridge University Press):

∫ π

0

∫ 2π

0
S
p∗
k

S
m
l dφ sin θdθ =





1 0 0

0 l 0

0 0 l



 δklδmp , with l = l(l + 1) (7)

→ harmonics uncoupled in the mass term (kinetic energy)

“Painful” orthogonality of tensor SH (Z. Martinec (2000), Geophysical Journal International 142), e.g.
for one component:

∫

π

0

∫

2π

0









∂2Y
p∗
k

∂θ2
− cot θ

∂Y
p∗
k

∂θ
−

1

sin2 θ

∂2Y
p∗
k

∂φ2









∂2Ym
l

∂θ2
− cot θ

∂Ym
l

∂θ
−

1

sin2 θ

∂2Ym
l

∂φ2





+4
∂

∂θ





1

sin θ

∂Y
p∗
k

∂φ





∂

∂θ

(

1

sin θ

∂Ym
l

∂φ

)



 dφ sin θdθ = (l − 1)l(l + 2)δklδmp , (8)

→ harmonics uncoupled in the stiffness term (elastic potential energy)
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The 1D semi-analytical finite element formulation

After tedious algebraic manipulations...

Finite element system

(

K(l)− ω2
M(l)

)

Û
m
l = F̂

m
l (9)

with K(l) = K1(l) + K2(l) + KT
2 (l) + K3(l) and:

K
e
1 (l) =

∫

dN
eT

dr





C11 0 0

0 lC55 0

0 0 lC55





dN
e

dr

r̃2

γ
dr , (10)

K
e
2 (l) =

∫

dN
eT

dr





2C12 −lC12 0

lC55 −lC55 0

0 0 −lC55



 N
e
r̃dr , (11)

K
e
3 (l) =

∫

N
eT







lC55 + 4Cβ −l
(

C55 + 2Cβ
)

0

−l
(

C55 + 2Cβ
)

l(C55 + lC23 + 2(l − 1)C44) 0

0 l(C55 + (l − 2)C44) 0






N
e
γdr , (12)

M
e
(l) =

∫

ρN
eT





1 0 0

0 l 0

0 0 l



N
e
r̃
2
γdr (with Cβ = C23 + C44) (13)

Fully analytical description along the angular coordinate for any type of FE
interpolation → easy to implement

Finite element is 1D → fast computations
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Resonances and forced response

Resonances: free response

(

K(l) − ω2
l M(l)

)

Û
m
l = 0 (14)

Linear eigenproblem → simple to solve

The resonances ω
(n)
l

and radial modeshapes Û
(n)
l

depend on l

... but not on the azimuthal wavenumber m (for a given l , 2l + 1 modes with the
same eigenfrequency)
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Resonances and forced response

Resonances: free response

(

K(l) − ω2
l M(l)

)

Û
m
l = 0 (14)

Linear eigenproblem → simple to solve

The resonances ω
(n)
l

and radial modeshapes Û
(n)
l

depend on l

... but not on the azimuthal wavenumber m (for a given l , 2l + 1 modes with the
same eigenfrequency)

Forced response (F̂m
l

6= 0)

K , M are complex but symmetric → straightforward modal orthogonalty

Modal superposition leads to:

U(θ, φ, t) =
∑

l≥0

∑

|m|≤l

S
m
l (θ, φ)

1

2π

∫ +∞

−∞

[

N
∑

n=1

Û
(n)T
l

F̂m
l
(ω)Û

(n)
l

ω
(n)2
l

− ω2

]

e−jωtdω. (15)
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Resonances and forced response

Resonances: free response

(

K(l) − ω2
l M(l)

)

Û
m
l = 0 (14)

Linear eigenproblem → simple to solve

The resonances ω
(n)
l

and radial modeshapes Û
(n)
l

depend on l

... but not on the azimuthal wavenumber m (for a given l , 2l + 1 modes with the
same eigenfrequency)

Forced response (F̂m
l

6= 0)

K , M are complex but symmetric → straightforward modal orthogonalty

Modal superposition leads to:

U(θ, φ, t) =
∑

l≥0

∑

|m|≤l

S
m
l (θ, φ)

1

2π

∫ +∞

−∞

[

N
∑

n=1

Û
(n)T
l

F̂m
l
(ω)Û

(n)
l

ω
(n)2
l

− ω2

]

e−jωtdω. (15)

F̂m
l
(ω): force coefficients obtained from the vector SH transform of F (θ, φ, ω)

F̂
m
l

(ω) =
∫π
0

∫ 2π
0 S

m∗

l
(θ, φ)F(θ, φ, ω)dφ sin θdθ → fast tools needed!

Numerical integration strategy: FFT for φ + GLQ for cos θ (see M. A. Wieczorek and M. Meschede

(2018), Geochemistry, Geophysics, Geosystems 19)
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Resonances of a surface-free sphere

Reference results for a homogeneous, isotropic, surface-free sphere: A. C. Eringen and
E. S. Şuhubi (1975), vol. II, Academic Press (black curves).
Numerical model: no PML, 1014 dofs (quadratic 1D finite elements).
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Resonances of a surface-free sphere

Reference results for a homogeneous, isotropic, surface-free sphere: A. C. Eringen and
E. S. Şuhubi (1975), vol. II, Academic Press (black curves).
Numerical model: no PML, 1014 dofs (quadratic 1D finite elements).
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n=2
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     Torsional (ur=0)

     Spheroidal

Mode order

Tesseral mode Sectoral mode

Normal displacement at the surface

increasing

internal 

displacement

maximum 

surface displacement

for n=1Rayleigh mode
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Generation of whispering-gallery waves

Polar aperture of line source for a collimating (diffraction-free) Rayleigh wave
(D. Clorennec and D. Royer (2004), Applied physics letters 85):

θCOL =
√

πcR
4afc

(if θ > θCOL: focusing, if θ < θCOL: diverging)

Forced response model: superposition on N = 80 eigenmodes for l = 0 to l = 150,
viscoelastic steel (cR=2919.8m/s), radius a=25mm, fc=1MHz ⇒ θCOL ≈ 17◦
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Generation of whispering-gallery waves

Polar aperture of line source for a collimating (diffraction-free) Rayleigh wave
(D. Clorennec and D. Royer (2004), Applied physics letters 85):

θCOL =
√

πcR
4afc

(if θ > θCOL: focusing, if θ < θCOL: diverging)

Forced response model: superposition on N = 80 eigenmodes for l = 0 to l = 150,
viscoelastic steel (cR=2919.8m/s), radius a=25mm, fc=1MHz ⇒ θCOL ≈ 17◦

Modal analysis:

modes are spheroidal (radial source)

leading wavenumbers: sectoral (m ≈ l)

dominant mode = Rayleigh wave (n = 1)
(n > 1 modes ≡ body waves)
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Adding a coating layer

Let us add a 1mm layer of viscoelastic epoxy at the surface of the sphere...
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n=1

n=2

n=3

n=4

n=5

Eigenfrequencies of the coated sphere (red:
Rayleigh mode without coating)

Collimating wave is possible at the sphere-coating interface
... but the Rayleigh-like behavior depends on the frequency (dispersion)
→ the source must be designed accordingly: fc=1.2MHz, θCOL ≈ 15◦
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Adding a coating layer

Let us add a 1mm layer of viscoelastic epoxy at the surface of the sphere...
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Quality factors Q = −Reω/2Imω. Top: sphere,
bottom: coated sphere (gray: torsional modes)

Collimating wave is possible at the sphere-coating interface
... but the Rayleigh-like behavior depends on the frequency (dispersion)
→ the source must be designed accordingly: fc=1.2MHz, θCOL ≈ 15◦

The Q-factors ∼decrease toward the shear or Rayleigh Q-factors (∼400 for steel)
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Resonances of a steel sphere buried in concrete

PML parameters: complex thickness γ̂ × h = (1 + 2j)× 0.25a, d = a
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0
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(k
s
0
a
)

Re(ks0a)

Typical spectrum of a buried sphere: discrete
leaky poles + continua of radiation modes
PML-rotated by − arg γ̂ (black:torsional, red:
spheroidal)

Filtering of radiation modes required
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Resonances of a steel sphere buried in concrete

PML parameters: complex thickness γ̂ × h = (1 + 2j)× 0.25a, d = a
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Q-factors (top: spheroidal, bottom: torsional)

Filtering of radiation modes required

The Q-factor tends to increase with frequency (probably up to QR,s)

Significant reduction of Q-factors (energy leakage)

The Rayleigh mode has the worst Q-factor

14 / 17

Matthieu Gallezot Elastic wave propagation in spheres



Introduction Numerical model Numerical results Conclusion

Outline

1 Introduction

2 Numerical model

3 Numerical results

4 Conclusion

15 / 17

Matthieu Gallezot Elastic wave propagation in spheres



Introduction Numerical model Numerical results Conclusion

Conclusion

A general numerical model for multi-layered buried elastic spheres:

easy to implement (tensor SH orthogonality)

fast building of FE matrices (1D finite element)

fast computation of resonances (linear eigenproblem)

fast calculation of the forced response (post-processing using mode orthogonality)

Results:

accuracy checked by comparison with literature results

collimating Rayleigh wave experiment is recovered numerically

modal formalism is mandatory due to multimodal and dispersive nature of waves

quality factors: much weaker than in optics

Future works:

experiments (on-going, in collaboration with A. Duclos, LAUM)

design of geometry and materials?

sensor prototyping...
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Thank you for your attention
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Transient signals
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Transient signals at θ = 90◦ and φ = π/2. Superposition on N=80 eigenmodes. Top: sphere
(red: superposition on the Rayleigh mode only), bottom: coated sphere.
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Collimating, focusing, diverging

(a) (b) (c)

Forced response 10 log10(|û
m
l /max ûm

l |) (dB) at the surface of a viscoelastic sphere (r = a) and at
the centre frequency (ω = 49.46) for (a) a collimating wave (θσ = 0.1514); (b) a focusing wave
(θσ = 0.2668); (c) a diverging wave (θσ = 0.0667).
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Validation embedded case

0 5 10 15 20 25

Re(k
1L

a)

0

5
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15

20

25

30
l

Eigenfrequencies, alu/plexiglas

Aluminium sphere into plexiglas matrix. Black: J.-P. Sessarego, J. Sageloli, R. Guillermin, and
H. Überall (1998), The Journal of the Acoustical Society of America 104 results; Red: numerical
results. PML parameters: h = 0.5a, d = a, γ̂ = 2 + 4j.
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