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Introduction
oe

Goal

Whispering gallery waves:
@ Optics: well-known, modes confined near surface+equator, high quality factor
@ Elasticity: analogy? differences?

— Let us compute the resonances (vibration modes) of a buried elastic sphere...

Issues:

o efficient high-frequency model: no full 3D, no full analytical (unstable)! — 1D
semi-analytical FE model

LV. Dubrovskiy and V. Morochnik (1981), /zv. Earth Phys 17
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oe

Goal

Whispering gallery waves:
@ Optics: well-known, modes confined near surface+equator, high quality factor
@ Elasticity: analogy? differences?

— Let us compute the resonances (vibration modes) of a buried elastic sphere...

Issues:

o efficient high-frequency model: no full 3D, no full analytical (unstable)! — 1D
semi-analytical FE model

@ resonances of open systems: unbounded problem, leaky resonances ('improper’
modes growing at infinity?) — Perfectly Matched Layer truncation (PML)

LV. Dubrovskiy and V. Morochnik (1981), /zv. Earth Phys 17

2p Lalanne, W. Yan, K. Vynck, C. Sauvan, and J.-P. Hugonin (2018), Laser & Photonics Reviews 12 ; M. Mansuripur, M. Kolesik,
and P. Jakobsen (2017), Phys. Rev. A 96 (1) ; M. Gallezot (2018), PhD thesis, Ecole Centrale Nantes
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Numerical model
o

Outline

© Numerical model
@ The elastodynamic problem
@ Analytical description of the angular behaviour
@ Semi-analytical finite element formulation
@ Resonances and forced response
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Numerical model

Weak form of the elastodynamic problem truncated with a radial PML

Weak form of elastodynamics in spherical coordinates:

/:6€T&d\~/—w /péu udV—/cSqudV—i- siTidov (1)
v av

( 0,6) = [i:(7,0,¢), do(F,0,0), us(F,0,0)]", dV = P sin6dFdode
= Lii where [ = L’B” +Lo-25 708 T L¢r5m98¢ + 1,_ + coteL
o Frrie g(F)=g(r), 08/0F = 0g/(~(r)0r), dF = ~(r)dr

@ assumption: transverse isotropic materials

Truncature with a radial PML

PML = analytic continuation? of the radial coordinate
r
i = [ e, (2)

with the attenuation function
e y(r)=1ifr<d,
e Im~(r)>0ifd<r<d+h

:x

@W. C. Chew and W. H. Weedon (1994), Microwave and Optical Technology Letters 7
4
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Numerical model
o

Analytical description of the angular behaviour (6, ¢)

The angular and radial variables can be separated:

u(r,0,8) = > S/"(0,0)a/"(r) ©)
1>0 [m|<I
A. C. Eringen and E. S. Suhubi (1975), vol. I, Academic Press ; E. Kausel (2006), Cambridge University Press
Matrix of vector spherical harmonics
Y"(6, ) 0 0
aY['(0,¢) aY['(0,¢)
5M(0,¢) = 0 50 — 006 | - (4)
0 aY(6,¢) Y[ (0,9)
sin 006 80

with the scalar spherical harmonics

21+ 1)(/ — m)!

Yo, ) = 4 (1 + m)!

P (cos8)el™® 1 €N, |m| < I. (5)

P["(cos 0): associated Legendre polynomial, (/, m): polar and azimuthal wavenumbers

Finite element discretization of the radial coordinate:
a"e(r) = N°(n U™, su"(r,0,¢) = SUTNT(r)S[" (6, ) (6)
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Numerical model
[ 1e]

Angular integration of the weak formulation

Angular integration strategies:
Q Numerical integration (P. Heyliger and A Jilani (1992), International Journal of Solids and Structures 29)
Q Manual integration for a specific choice of interpolation function (J. Park (2002),

PhD thesis, Massachusetts Institute of chhno\ogy)

9 Use orthogonality relations of Spherical Harmonics thanks to the choice of du
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Numerical model
[ 1e]

Angular integration of the weak formulation

Angular integration strategies:

9 Use orthogonality relations of Spherical Harmonics thanks to the choice of du

o “Classical” orthogonality of vector SH (E. Kausel (2006), Cambridge University Press):

™ 21 1
/ S."S"dpsinfdf = |0
0 0 0

o -1 O

0
Of 0bmp, with I=1(/1+1) (7)
I

— harmonics uncoupled in the mass term (kinetic energy)

@ “Painful” orthogonality of tensor SH (z. Martinec (2000), Geophysical Journal International 142), €.8.
for one component:

x ron [ [ O2VP* avp* 1 2vp* A aym 1@
/ / — cot - — ot L
o Jo 862 a6 sin2 0 8¢2 862 a0 sin2 0 92
8 1 avPT\ o 1 av" _
ta— | — —— | — [ — —— || désin0do = (I — DIl +2)8,y8mp,  (8)
86 \sin0 8¢ 86 \sin0 09

— harmonics uncoupled in the stiffness term (elastic potential energy)
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Numerical model
(o] J

The 1D semi-analytical finite element formulation

After tedious algebraic manipulations...

Finite element system

(K(I) — w?>M(1)) O = " (9)

with K(I) = Ki(I) + Ka(1) + KX (1) + K3(/) and:

aneT [G1 0 07 ane 2
K{ () = / 0 iGss 0 —adr, (10)
dr 0 0 ICss| dr v
- aneT [2Gp  —ICpp 0
KS5() = / ICss  —ICss 0 | N®Hr, (11)
dr 0 0 —TCss
o ICs5 +4Cg —1(Cs5 +2Cg) 0
KS() = / NE | —T(Cos +2C) I(Css +1Co3 +2(1 = 1)Caq) O NE~dr, (12)
0 I(Co5 + (I — 2)Cas) 0
. 10 0
ME(l) = / oneT lo 7 of NePPyar (with C3 = Cp3 + Caq) (13)
o o I

@ Fully analytical description along the angular coordinate for any type of FE
interpolation — easy to implement

9 Finite element is 1D — fast computations
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Numerical model
(]

Resonances and forced response

Resonances: free response

(K() —w2M()) O =0 (14)

@ Linear eigenproblem — simple to solve
(n) (n)

@ The resonances w,’ and radial modeshapes U, depend on /

@ ... but not on the azimuthal wavenumber m (for a given /, 2/ + 1 modes with the
same eigenfrequency)
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Numerical model
(]

Resonances and forced response

Resonances: free response

(K() —w2M()) O =0 (14)

@ Linear eigenproblem — simple to solve
(n) (n)

@ The resonances w,’ and radial modeshapes U, depend on /

@ ... but not on the azimuthal wavenumber m (for a given /, 2/ + 1 modes with the
same eigenfrequency)

Forced response (I:'/"’ #0)

@ K, M are complex but symmetric — straightforward modal orthogonalty

@ Modal superposition leads to:

1 +oo [ N 0(")Tﬁm(w)u(") B
U, 6,0 =33 sr, ‘”E/ S0 eietdw, (15)
1>0 |m|<I —%° Ln=1 Wyt =W
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Numerical model
(]

Resonances and forced response

Resonances: free response

(K() —wiM(1)) 0" =0 (14)

@ Linear eigenproblem — simple to solve
@ The resonances w,(n) and radial modeshapes U,(n)

. but not on the azimuthal wavenumber m (for a given /, 2/ + 1 modes with the
same eigenfrequency)

depend on /

Forced response (I:'/"’ #0)

@ K, M are complex but symmetric — straightforward modal orthogonalty

@ Modal superposition leads to:

U6t =33 sme, ¢>)—/

1>0 |m|<I

N /()T em
U F, .
E 7@}) e 1¥tdw. (15)
(n2 _ o
n=1 OJI w

I:'"’( ): force coefficients obtained from the vector SH transform of F(6, ¢,w)
EM(w) = [T JET S| (0, $)F(0, ¢, w)desinode — fast tools needed!
Numencal integration strategy: FFT for ¢ + GLQ for cos @ (see M. A. Wieczorek and M. Meschede

(2018), Geochemistry, Geophysics, Geosystems 19)
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Numerical results
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© Numerical results
@ Validation: surface-free homogeneous sphere
@ Generation of whispering-gallery waves
@ Resonances of a buried sphere
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Numerical results
L]

Resonances of a surface-free sphere

Reference results for a homogeneous, isotropic, surface-free sphere: A. C. Eringen and
E. S. Suhubi (1975), vol. Il, Academic Press (black curves).
Numerical model: no PML, 1014 dofs (quadratic 1D finite elements).

%0 ] Mod > rder
Mode type : n=5
80 + Torsional (u;=0) n=4 increasing
. A Spheroidal R;g internal
displacement

60 #** n=1

< 50 e maximum

S surface displacement

13" 40 for n=1

10 20 30 40 50 60
Polar wavenumber |
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Numerical results
L]

Resonances of a surface-free sphere

Reference results for a homogeneous, isotropic, surface-free sphere: A. C. Eringen and
E. S. Suhubi (1975), vol. Il, Academic Press (black curves).
Numerical model: no PML, 1014 dofs (quadratic 1D finite elements).

%0 ] Mod > rder
Mode type : n=5
80 + Torsional (u;=0) n=4 increasing
. A Spheroidal R;g internal
displacement

60 #** n=1

< 50 e maximum

S surface displacement

13" 40 for n=1

m=30=1 gos
IO.S I

0

10 20 30
Polar wavenumber |

" Mg’ i

-0.8
Tesseral mode Sectoral mode

Normal displacementu,.(6, ¢)at the surface
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Numerical results
L Je]

Generation of whispering-gallery waves

Polar aperture of line source for a collimating (diffraction-free) Rayleigh wave
(D Clorennec and D. Royer (2004), Applied physics letters 85):

0 =,/TR (f0 > 6coL: focusing, if 6 < Ocoy : diverging) -
coL Aaf. coL g coL ging —

N ederometer

Forced response model: superposition on N = 80 eigenmodes fo;' I =0 to | =150,
viscoelastic steel (cg=2919.8m/s), radius a=25mm, fe=1MHz = Oco_ ~ 17°
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Numerical results
L Je]

Generation of whispering-gallery waves

Polar aperture of line source for a collimating (diffraction-free) Rayleigh wave

(D Clorennec and D. Royer (2004), Applied physics letters x%):
4= 00 \
_ [mcRr ) . o . divergi =t
QCOL = Zaf, (if & > Ocoy: focusing, if & < Oy : diverging) N&vwl il
ser

N ederoeter

Forced response model: superposition on N = 80 eigenmodes fo;' I =0 to | =150,
viscoelastic steel (cg=2919.8m/s), radius a=25mm, fe=1MHz = Oco_ ~ 17°

Modal analysis:
@ modes are spheroidal (radial source)
@ leading wavenumbers: sectoral (m ~ /)

@ dominant mode = Rayleigh wave (n = 1)
(n > 1 modes = body waves)
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Numerical results
o] ]

Adding a coating layer

Let us add a 1mm layer of viscoelastic epoxy at the surface of the sphere...

Eigenfrequencies of the coated sphere (red:
Rayleigh mode without coating)

@ Collimating wave is possible at the sphere-coating interface
@ ... but the Rayleigh-like behavior depends on the frequency (dispersion)
— the source must be designed accordingly: fc=1.2MHz, 6co ~ 15°
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Numerical results
o] ]

Adding a coating layer

Let us add a 1mm layer of viscoelastic epoxy at the surface of the sphere...

Eigenfrequencies of the coated sphere (red:
Rayleigh mode without coating)

Quality factors Q = —Rew/2Imw. Top: sphere,
bottom: coated sphere (gray: torsional modes)

@ Collimating wave is possible at the sphere-coating interface
@ ... but the Rayleigh-like behavior depends on the frequency (dispersion)
— the source must be designed accordingly: fc=1.2MHz, 6co ~ 15°
@ The Q-factors ~decrease toward the shear or Rayleigh Q-factors (~400 for steel) )
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Numerical results
o

Resonances of a steel sphere buried in concrete

PML parameters: complex thickness 4 x h = (1 +2j) x 0.25a, d = a

O R external leaky resonances ., . ¥
o
& . internal leaky resonances
2}
T -4
%
s
1 PMLmodes %50
=6 P g
oy
o o
toy oo,
8 F o
e + o+ B e
o)
&
10 . . .
8 10

4 6
Re(ksoa)

Typical spectrum of a buried sphere: discrete
leaky poles + continua of radiation modes
PML-rotated by — arg 4 (black:torsional, red:
spheroidal)

@ Filtering of radiation modes required
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Numerical results
o

Resonances of a steel sphere buried in concrete

PML parameters: complex thickness 4 x h = (1 +2j) x 0.25a, d = a

(a)

exermal leaky fesonancks ., -
*

n internal leaky resonances

PML modes &5

Im(Ksp@)

4 6
Re(ksoa)

Typical spectrum of a buried sphere: discrete
leaky poles + continua of radiation modes

PML-rotated by — arg 4 (black:torsional, red: o EJ 100 150
spheroidal)

Q-factors (top: spheroidal, bottom: torsional)

@ Filtering of radiation modes required

@ The Q-factor tends to increase with frequency (probably up to Qg s)
@ Significant reduction of Q-factors (energy leakage)

°

The Rayleigh mode has the worst Q-factor
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@ Conclusion
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Conclusion
o] lo}

Conclusion

A general numerical model for multi-layered buried elastic spheres:
@ easy to implement (tensor SH orthogonality)
@ fast building of FE matrices (1D finite element)
@ fast computation of resonances (linear eigenproblem)
@ fast calculation of the forced response (post-processing using mode orthogonality)
Results:
@ accuracy checked by comparison with literature results
@ collimating Rayleigh wave experiment is recovered numerically
9@ modal formalism is mandatory due to multimodal and dispersive nature of waves
@ quality factors: much weaker than in optics
Future works:
@ experiments (on-going, in collaboration with A. Duclos, LAUM)
@ design of geometry and materials?

@ sensor prototyping...
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Conclusion
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Thank you for your attention
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Transient signals

%1071

0 05 1 1.5 2 25 3
t(s) x10
%10
©
=0
=
5 . . . . .
[ 05 1 1.5 2 25 3
t(s) x10*

Transient signals at § = 90° and ¢ = 7 /2. Superposition on N=80 eigenmodes. Top: sphere
(red: superposition on the Rayleigh mode only), bottom: coated sphere.
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Collimating, focusing, diverging

(a) (b) (c)

Forced response 10 log,,(|d" /max i;"|) (dB) at the surface of a viscoelastic sphere (r = a) and at
the centre frequency (w = 49.46) for (a) a collimating wave (6, = 0.1514); (b) a focusing wave
(05 = 0.2668); (c) a diverging wave (8, = 0.0667).
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Validation embedded case

30 Eigenfrequencies, alu/plexiglas

20 1

0 5 10 15 20 25
Re(k, a)

Aluminium sphere into plexiglas matrix. Black: J.-P. Sessarego, J. Sageloli, R. Guillermin, and
H. Uberall (1998), The Journal of the Acoustical Society of America 104 results; Red: numerical
results. PML parameters: h = 0.5a, d = a, § = 2 + 4j.
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