SMOG et les modes de galerie optiques

Dominique Leduc, Yann Lecieux, Cyril Lupi, Corentin Guigot June 21, 2021

GeM, University of Nantes

SMOG

Comment mesurer une déformation au cœur d'un matériau ?

Déformation : champ tensoriel

$$\overline{\overline{\epsilon}}(x_1, x_2, x_3) = \begin{pmatrix} \epsilon_{11}(x_1, x_2, x_3) & \epsilon_{12}(x_1, x_2, x_3) & \epsilon_{13}(x_1, x_2, x_3) \\ \epsilon_{12}(x_1, x_2, x_3) & \epsilon_{22}(x_1, x_2, x_3) & \epsilon_{23}(x_1, x_2, x_3) \\ \epsilon_{13}(x_1, x_2, x_3) & \epsilon_{23}(x_1, x_2, x_3) & \epsilon_{33}(x_1, x_2, x_3) \end{pmatrix}$$

En chaque point \rightarrow 6 composantes de déformation

- \rightarrow 6 mesures
- \rightarrow 6 capteurs

Comment mesurer une déformation au cœur d'un matériau ?

Extensomètres enfouis classiques

extensomètre à fibre optique

corde vibrante

Encombrement ↓ Impossibilité de réaliser 6 mesures au même point

Théorème d'Eshelby \rightarrow Capteur Sentinelle

Hypothèses

Inclusion ellipsoïdale dans matrice chargée uniformément à l'infini

Conclusions

- Caractéristiques matériaux $\mathbb{C}, \mathbb{C}_0 \, : \, \text{tenseurs de Hook}$
 - \mathbb{S}_0 : tenseur d'Eshelby
- Quantités connues
 E, E^f déformation du capteur
- Quantités recherchées
 E₀, E^f₀ déformation de la matrice

- $\left(\mathbb{I} + \mathbb{S}_0 : \mathbb{C}_0^{-1} : (\mathbb{C} \mathbb{C}_0)\right) : \mathbf{E} = \mathbf{E}_0 + \mathbb{S}_0 : \mathbb{C}_0^{-1} : (\mathbb{C} : \mathbf{E}^f \mathbb{C}_0 : \mathbf{E}_0^f)$
- Déformation homogène dans l'inclusion

Théorème d'Eshelby \rightarrow Capteur Sentinelle

En pratique

Simulation de compression uniaxiale d'une éprouvette cylindrique

Validité Eshelby si inclusion « matrice

Théorème d'Eshelby \rightarrow Capteur Sentinelle

Déformation homogène dans la sphère \Rightarrow positions jauges indifférentes

Capteur Sentinelle :

6 extensomètres à fibre optique selon les 6 normales aux faces d'un dodécaèdre inscrit dans la sphère

Capteur sentinelle première version

Déformation isotrope

Pressure measured by the reference probe (MPa)

Erreur relative $\simeq 1\%$

Capteur sentinelle deuxième version

Déformation uniaxiale

Différences entre capteurs: 8.10⁻⁶ m/m déformation axiale 5.10^{-6} m/m déformation radiale

Capteur sentinelle deuxième version

Mesure du retrait dans une éprouvette en béton

Mise en évidence d'un retrait anisotrope

Capteur sentinelle à modes de galerie

Limites de sentinelle

- collage jauge \rightarrow taille sphère \geq 40 mm
- difficulté usinage (portée perçage)

Alternative

Mode de Galerie : Onde se propageant à la surface d'une sphère ↓ Remplacer les 6 jauges traversantes par 6 modes de galeries Modes de galerie optiques

Modes de galerie : "Whispering Gallery Modes"

Coupole de la cathédrale Saint-Paul

Réflexions totales multiples

Modes de galerie : approche électromagnétique

Équations de Maxwell

$$\overrightarrow{\nabla} \cdot \overrightarrow{E} = 0 \qquad \overrightarrow{\nabla} \wedge \overrightarrow{E} = -\mu_0 \varepsilon \frac{\partial \overrightarrow{B}}{\partial t}$$
$$\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0 \qquad \overrightarrow{\nabla} \wedge \overrightarrow{B} = \frac{\partial \overrightarrow{E}}{\partial t}$$

Équations de propagation des ondes $\begin{cases} \nabla^2 \overrightarrow{E}(x, z, t) + k^2 \overrightarrow{E}(x, z, t) = \overrightarrow{0} \quad \text{où} \quad k = \frac{n\omega}{c} \end{cases}$

Équation d'onde scalaire

Méthode de résolution de l'équation des ondes

• Recherche de $\mathcal{A}(r, \theta, \phi)$ solution de l'équation scalaire

•
$$ec{E} = ec{
abla} \wedge \mathcal{A}(r, heta, \phi) ec{e_r}$$

 $ec{B} = -rac{i}{\omega\mu_0\varepsilon} ec{
abla} \wedge ec{
abla} \wedge \mathcal{A}(r, heta, \phi) ec{e_r}$

Équation des ondes scalaire en coordonnées sphériques

Solution scalaire

Équation de dispersion

Continuité des composantes tangentielles des champs

$$\rightarrow \frac{\chi_{\ell}'\left(\frac{2\pi}{\lambda}n_{2}a\right)}{\chi_{\ell}\left(\frac{2\pi}{\lambda}n_{2}a\right)} - \frac{n_{1}}{n_{2}}\frac{\psi_{\ell}'\left(\frac{2\pi}{\lambda}n_{1}a\right)}{\psi_{\ell}\left(\frac{2\pi}{\lambda}n_{1}a\right)} = 0$$

 $\rightarrow \text{Longueurs} \\ \text{d'ondes résonnantes}$

Champ électrique

$$\vec{E} \begin{vmatrix} E_r &= 0 \\ E_{\theta} &= \frac{im}{r\sin\theta} \mathcal{A}_{\ell}(r) P_{\ell}^m(\cos\theta) e^{im\phi} \Rightarrow E_{\theta} >> E_{\phi} \\ E_{\phi} &= -\frac{1}{r} \mathcal{A}_{\ell}(r) \frac{\partial P_{\ell}^m(\cos\theta)}{\partial \theta} e^{im\phi} \end{vmatrix}$$

Déformation de la sphère : simulation éléments finis

Simulations Comsol

Problème indice milieu extérieur :

- non maîtrisé
- varie avec déformation
- \Rightarrow Ajout d'une gaine tampon

$$3 \text{ milieux} \rightarrow \begin{cases} \mathcal{A}_{\ell}(r) = A_1 \frac{\psi_{\ell}(k_i r)}{k_i r} & \text{dans la boule} \\ \mathcal{A}_{\ell}(r) = A_2 \frac{\psi_{\ell}(k_i r)}{k_i r} + A_3 \frac{\chi_{\ell}(k_i r)}{k_i r} & \text{dans la gaine} \\ \mathcal{A}_{\ell}(r) = A_4 \frac{\chi_{\ell}(k_i r)}{k_i r} & \text{à l'extérieur} \end{cases}$$

Une gaine de 10 λ d'épaisseur isole complètement la sphère du milieux extérieur

Excitation des modes

Couplage par onde évanescente

Excitation des modes avec gaine tampon

Ying-Zhan Yan et al., Optics express , 19(7) :5753-5759, 2011.

Architecture

- Corps d'épreuve sphérique en silice de rayon a ∈ [100 µm; 500 µm] et indice n₁ ≃ 1,5
- Gaine tampon en résine d'indice $n_2\simeq 1,35$
- Injection au moyen de 6 fibres effilées prises dans la gaine

Procédure de mesure

- Mesure des creux dans les spectres des lumières transmises par les fibres effilées → longueurs d'ondes des modes de galerie.
- Inversion de la mesure \rightarrow déformation du corps d'épreuve.
- Théorème d'Eshelby \rightarrow déformation de la matrice hôte.