

Diffusion radar par des surfaces rugueuses aléatoires - Application aux surfaces de chaussée

Nicolas PINEL

Icam Ouest – site de Nantes IETR – UMR 6164 nicolas.pinel@icam.fr

GIS ECND-PdL Webinar 16/06/2020

OUTLINE

I. Generalities

- 1. Rough interfaces: Statistical description
- 2. EM scattering by an interface
- II. EM scattering from random rough surfaces: Asymptotic models

III. Applications to GPR

Rough interfaces (EM): No surface is perfectly flat at *all scales of EM wavelength*:

16/06/2020

Random rough surfaces: Different types of variations: $z = \zeta(\dots)$:

- Space variations only: $z = \zeta(x, y)$:
 - agricultural surfaces (ploughed fields, ...)
 - surfaces of mountains, sand dunes; ice, ...
 - road surfaces, wall surfaces, ... (@ high radar frequencies)
 - optical surfaces (non-grounded glasses, ...)
 - ...
- Space and time variations: $z = \zeta(x, y; t)$:
 - sea surfaces
 - surfaces of sand dunes; ice, ... (! long-time observation)

- ...

Random rough surface characterised by:

- p_h : height probability density function (PDF)
- W_h : height autocorrelation function (ACF)

Height PDF p_h :

- Mean value $\zeta_0 = \langle \zeta(x) \rangle$
- Characteristic dispersion around ζ_0 : standard deviation σ_h

Typically \rightarrow centred Gaussian process (zero mean $\zeta_0=0$):

$$p_h(\zeta) = \frac{1}{\sigma_h \sqrt{2\pi}} \exp\left(-\frac{\zeta^2}{2\sigma_h^2}\right)$$

16/06/2020

ECND Bestructifs ECND Bestruc

- Height PDF p_h
- Height ACF W_h

Height ACFs W_h and spectra S_h : for 1D surfaces $(x, y) \rightarrow x$:

• Gaussian, Lorentzian and exponential ACFs:

1.
$$W_h(x) = \sigma_h^2 \exp\left(-\frac{x^2}{L_c^2}\right)$$
,
2. $W_h(x) = \frac{\sigma_h^2}{1 + x^2/L_c^2}$,
3. $W_h(x) = \sigma_h^2 \exp\left(-\frac{|x|}{L_c}\right)$

• By Fourier transform (FT), their corresponding spectrum are:

1.
$$S_h(k) = \sqrt{\pi} \sigma_h^2 L_c \exp\left(-\frac{L_c^2 k^2}{4}\right),$$

2. $S_h(k) = \pi \sigma_h^2 L_c \exp(-L_c |k|),$
3. $S_h(k) = \frac{2\sigma_h^2 L_c}{1 + L_c^2 k^2}$

→ the FT of a Gaussian is a Gaussian, whereas the FT of a Lorentzian is an exponential and vice-versa

16/06/2020

Generated (Gaussian) surface – Influence of <u>correlation length L</u>:

16/06/2020

Generated surface – Influence of correlation type: (constant σ_h and L_c)

Gaussian \rightarrow Lorentzian \rightarrow exponential: higher frequencies

16/06/2020

OUTLINE

I. Generalities

- 1. Rough interfaces: Statistical description
- 2. EM scattering by an interface
- II. EM scattering from random rough surfaces:Asymptotic models

III. Applications to GPR

EM scattering by an interface

Incident wave $\mathbf{E}_{\mathbf{i}}$ on the random rough surface $\mathbf{R} = \mathbf{R}_{\mathbf{A}}$: $\mathbf{E}_{\mathbf{i}}(\mathbf{R}_{\mathbf{A}}) = E_0 \exp(ik_1 \widehat{\mathbf{K}}_{\mathbf{i}} \cdot \widehat{\mathbf{R}}_{\mathbf{A}}) \widehat{\mathbf{e}}_{\mathbf{i}}$

Total field E_1 on the random rough surface $R = R_A$ in the medium Ω_1 : $E_1(R_A) = E_i(R_A) + E_r(R_A)$

Incident $\mathbf{E}_{\mathbf{i}}$ and reflected $\mathbf{E}_{\mathbf{r}}$ fields check the Helmholtz equation in Ω_1 : $(\nabla^2 + k_1^2)\mathbf{E} = \mathbf{0}$

Kirchhoff-Helmholtz equations:

PAYS DE LA

Equations describing the Huygens principle:

 $E_1 \rightarrow E_r \Rightarrow \textit{Kirchhoff-Helmholtz}$ equations

Scalar case (2D or 3D problem):

$$\forall \mathbf{R} \in \Omega_1, \ E_r(\mathbf{R}) = + \int_{\Sigma_A} d\Sigma_A \left(E_1(\mathbf{R}_A) \frac{\partial G_1(\mathbf{R}, \mathbf{R}_A)}{\partial N_A} - G_1(\mathbf{R}, \mathbf{R}_A) \frac{\partial E_1(\mathbf{R}_A)}{\partial N_A} \right)$$

with $\widehat{\mathbf{N}}_{\mathbf{A}}$ the normal to the surface Σ_A at considered surface point A, and $G_1(\mathbf{R}_{\mathbf{A}}, \mathbf{R})$ the Green function inside Ω_1

Unknowns: Surface currents

Vector case (3D problem):

$$egin{aligned} &orall \mathbf{R} \in \Omega_1, \mathbf{E}_{\mathbf{r}}(\mathbf{R}) = + \int_{\Sigma_A} d\Sigma_A \quad \left\{ i \omega \mu_0 \, ar{G}_1(\mathbf{R}, \mathbf{R}_A) \, \cdot \, [\mathbf{N}_A \wedge \mathbf{H}_1(\mathbf{R}_A)]
ight. \ &+ oldsymbol{
aligned} &+ oldsymbol{
aligned} \wedge ar{G}_1(\mathbf{R}, \mathbf{R}_A) \, \cdot \, [\mathbf{N}_A \wedge \mathbf{E}_1(\mathbf{R}_A)]
ight\} \end{aligned}$$

EM scattering by an interface

Scattering coefficient or NRCS vs. RCS (Radar Cross Section):

• **Definition of the RCS** (far-field assumption):

PAYS DE LA

$$RCS = 4\pi \lim_{R \to \infty} R^2 \frac{\left\langle |E_{d,\infty}|^2 \right\rangle}{\left| E_i \right|^2}$$

• Definition of the NRCS σ^0 (far-field assumption):

$$\sigma^{0} = \lim_{R \to \infty} R^{2} \frac{\left\langle \left| E_{d,\infty} \right|^{2} \right\rangle}{\left\lfloor L_{x}L_{y}\cos\theta_{i} \left| E_{i} \right|^{2} \right\rfloor}$$

total incident power

- Coherent NRCS $\sigma^{0,coh}$: $\sigma^{0,coh} = \lim_{R \to \infty} R^2 \frac{|\langle E_{d,\infty} \rangle|^2}{L_x L_y \cos \theta_i |E_i|^2}$
- Incoherent NRCS $\sigma^{0,inc} = \sigma^0 \sigma^{0,coh}$:

$$\sigma^{0,inc} = \lim_{R \to \infty} R^2 \frac{\left\langle \left| E_{d,\infty} \right|^2 \right\rangle - \left| \left\langle E_{d,\infty} \right\rangle \right|^2}{L_x L_y \cos \theta_i \left| E_i \right|^2}$$

16/06/2020

OUTLINE

I. Generalities

II. EM scattering from random rough surfaces: Asymptotic models

- 1. Introduction
- 2. KA & SPM (2D problems)
- 3. Unified asymptotic models (3D problems)

III. Applications to GPR

ECNDER Scattering by random rough surfaces

Random rough surfaces – Models and methods:

- Models of description of the EM problem: *rigorous* ("exact") vs. *asymptotic* (approximate)
- Methods of resolution (computation): *numerical* (sampling) vs. *analytical* (mathematical equation)

Method / Model	Rigorous	Asymptotic
Numerical	MoM; FEM; FDTD;	KA (KA+MSP); SPM; SSA;
Analytical	(none)	SKA, GO; SPM; SSA;

ECNDEM scattering by random rough surfaces

Random rough surfaces – Simple asymptotic models:

Validity domain:

physical surface-characteristic quantity ($\sigma_{\rm h}$, L_c, R_c, ...) compared to λ

- "low-frequency" models (large λ): $\lambda \gg$ physical quantity Example: SPM (Small Perturbation Method): $\sigma_h \ll a\lambda$, $a \in \mathbb{R}$
- "high-frequency" models (small λ): $\lambda \ll$ physical quantity Example:

KA (Kirchhoff-tangent plane Approximation): $R_c \gg a\lambda$, $a \in \mathbb{R}$

OUTLINE

I. Generalities

II. EM scattering from random rough surfaces: Asymptotic models

- 1. Introduction
- 2. KA & SPM (2D problems)
- 3. Unified asymptotic models (3D problems)

III. Applications to GPR

Kirchhoff Approximation (KA)

 \Rightarrow directions and amplitudes of $\textbf{E}_r,\, \textbf{E}_t$ corresponding to each scattering point A (γ_A) at any point of the considered medium

16/06/2020

Coherent NRCS under the KA+MSP:

General expression of the coherent NRCS $\sigma^{0,coh}$:

$$\sigma^{0,coh} = \lim_{R \to \infty} R^2 \frac{\left| \langle E_{d,\infty} \rangle \right|^2}{L_x \cos \theta_i \left| E_i \right|^2}$$

 \rightarrow evaluation of coherent scattered power / $|E_0|^2$:

 $\frac{|\langle E_r^{\infty}(\mathbf{R})\rangle|^2}{2\eta_1|E_0|^2} = \frac{k_1|f_r(\mathbf{K_i},\mathbf{K_r})|^2}{4\eta_1\pi R} \left| \left\langle \int_{-L_A/2}^{+L_A/2} dx_A \ e^{i(\mathbf{K_i}-\mathbf{K_r})\cdot\mathbf{R_A}} \ \Xi(\mathbf{R_A}) \right\rangle \right|^2,$

Random variables inside $\langle \cdots \rangle$: ζ_A and $\Xi(\mathbf{R}_A)$

 \rightarrow Gaussian statistics:

$$\implies \sigma_r^{coh}(\mathbf{K_r}, \mathbf{K_i}) = \frac{1}{\cos \theta_i} \frac{2\pi}{k_1 L_A} |f_r(\mathbf{K_i}, \mathbf{K_r})|^2 \mathcal{A}_r \,\delta\left(\hat{k}_{rx} - \hat{k}_{ix}\right) S_{11}^2(\mathbf{K_i}, \mathbf{K_r}),$$

$$\uparrow$$

$$\mathcal{A} = e^{-4R_a^2} = e^{-\left(8\pi \frac{\sigma_h}{\lambda} \cos \theta_i\right)^2}$$

16/06/2020

Coherent NRCS under the KA+MSP:

Coherent intensity $|\langle E_{r,\infty} \rangle|^2$ in specular direction $\theta_r = \theta_i$:

→ plotting of attenuation term $\mathcal{A} = e^{-4R_a^2} = e^{-\left(8\pi \frac{\sigma_h}{\lambda}\cos\theta_i\right)^2}$ for $\frac{\sigma_h}{\lambda} = \{0.01; 0.1; 0.2\}$

- $\frac{\sigma_h}{\lambda} \nearrow \Rightarrow$ coherent intensity \searrow

 $\theta_i \nearrow \Rightarrow$ coherent intensity \nearrow ($|\theta_i| \rightarrow 90^\circ \Rightarrow$ flat EM surface)

16/06/2020

Small perturbation method (2D problem)

The field scattered by the surface is:

$$E_s(\mathbf{r}) = E_{s,(0)}(\mathbf{r}) + E_{s,(1)}(\mathbf{r}) + E_{s,(2)}(\mathbf{r}) + \cdots,$$

with $E_{s,(n)}$ the *n*-order scattered field at $[k\zeta(x)]^n$

 \rightarrow valid for $k\zeta(x) \ll 1 \implies k\sigma_h \ll 1$

• <u>PC surface</u> \rightarrow H (TE) polarisation (Dirichlet condition):

Boundary condition on the surface:

$$\psi(\mathbf{r}) = \psi_i(\mathbf{r}) + \psi_s(\mathbf{r}) = 0, \ \mathbf{r} \in \Sigma$$

$$\Rightarrow \psi_{s,(0)}(\mathbf{r}) = -\psi_i(\mathbf{r}) \implies \psi_{s,(1)}(\mathbf{r}) = \cdots \implies \psi_{s,(2)}(\mathbf{r}) = \cdots$$

• <u>PC surface</u> \rightarrow V (TM) polarisation (Neumann condition): Boundary condition on the surface: $\frac{\partial \psi(\mathbf{r})}{\partial \psi_i(\mathbf{r})} = \frac{\partial \psi_i(\mathbf{r})}{\partial \psi_s(\mathbf{r})} = 0$ $\mathbf{r} \in \Sigma$

$$\rightarrow \frac{\partial \psi_{s}(\mathbf{r})}{\partial n} = -\frac{\partial \psi_{i}(\mathbf{r})}{\partial n} \Rightarrow \psi_{s,(1)}(\mathbf{r}) = \cdots \qquad \Rightarrow \psi_{s,(2)}(\mathbf{r}) = \cdots$$

OUTLINE

I. Generalities

II. EM scattering from random rough surfaces: Asymptotic models

- 1. Introduction
- 2. KA & SPM (2D problems)
- 3. Unified asymptotic models (3D problems)

III. Applications to GPR

ECNA alytic (asymptotic) methods: State of the art

Topical Review: [Elfouhaily & Guérin, WRM, 2004]

16/06/2020

Unified models for 3D problems

• Expressions of scattered field E_s and (incoherent) NRCS σ^0 / scattering amplitude (SA) S:

$$\boldsymbol{E}_{\boldsymbol{s}}(\boldsymbol{R}) = \int \frac{e^{j(\boldsymbol{k'}} \cdot \boldsymbol{r} + q_k z)}{q_k} \, \mathbb{S}(\boldsymbol{k'}, \boldsymbol{k_0}) \, d\boldsymbol{k'} \, \cdot \, \hat{\boldsymbol{E}}_{\boldsymbol{0}} \simeq -2j\pi \, \frac{e^{jKR}}{R} \, \mathbb{S}(\boldsymbol{k}, \boldsymbol{k_0}) \, \cdot \, \hat{\boldsymbol{E}}_{\boldsymbol{0}}$$

 \Rightarrow Expression of SA for simple asymptotic models:

• SPM0+1+2: $\mathbb{S}(k, k_0) = \frac{\mathbb{B}(k, k_0)}{Q_z} \delta(Q_H) - j \mathbb{B}(k, k_0) \hat{\eta}(Q_H)$ SPM1 • KAHF (= K/A+MSP): $-Q_z \int_{\xi} \mathbb{B}_2(k, k_0, \xi) \hat{\eta}(k - \xi) \hat{\eta}(\xi - k_0) d\xi$ SPM2

$$\mathbb{S}(\boldsymbol{k}, \boldsymbol{k_0}) = \frac{\mathbb{K}(\boldsymbol{k}, \boldsymbol{k_0})}{Q_z} \int_{\boldsymbol{r}} e^{-jQ_z \eta(\boldsymbol{r})} e^{-j\boldsymbol{Q_H} \cdot \boldsymbol{r}} d\boldsymbol{r}$$

• SSA1+2:
$$\mathbb{S}(k,k_0) = \frac{\mathbb{B}(k,k_0)}{Q_z} \int_r e^{-jQ_z\eta(r)} e^{-jQ_H \cdot r} dr \text{ SSA1}$$
$$-j\int_r \int_{\xi} \mathbb{M}(k,k_0;\xi)\hat{\eta}(\xi)e^{+j\xi \cdot r} d\xi e^{-jQ_z\eta(r)}e^{-jQ_H \cdot r} dr \text{ SSA2}$$

 \rightarrow SSA1: same structure as KAHF, but $\mathbb B$ kernel instead of $\mathbb K$ kernel

16/06/2020

Unified models for 3D problems

Expressions of (incoherent) monostatic NRCS σ^0 ($\mathbf{k} = -\mathbf{k_0}$):

 $\sigma_{pq}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = \left|\mathbb{B}_{pq}(\boldsymbol{k},\boldsymbol{k_{0}})\right|^{2} \tilde{W}(\boldsymbol{Q_{H}}) = \left[\frac{\sigma_{vv}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 16\pi k^{4}\tilde{W}(-2\boldsymbol{k_{0}})\left(1+\sin^{2}\theta_{0}\right)^{2}, \sigma_{vh}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 0, \sigma_{hv}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 0, \sigma_{hv}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 0, \sigma_{hv}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 0, \sigma_{hv}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 16\pi k^{4}\tilde{W}(-2\boldsymbol{k_{0}})\cos^{4}\theta_{0}.$ SPM1: $\int \sigma_{vv}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = \frac{|r_{v}(0)|^{2}}{\cos^{4}\theta_{0}} p_{s} \left(\boldsymbol{\gamma} = \tan\theta_{0}\right),$ KAHF \rightarrow GO: $\sigma_{pq}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = \left|\frac{\mathbb{K}_{pq}(\boldsymbol{k},\boldsymbol{k_{0}})}{Q_{z}}\right|^{2} p_{s}\left(\boldsymbol{\gamma} = -\frac{\boldsymbol{Q}_{\boldsymbol{H}}}{Q_{z}}\right) - \left|\begin{array}{c}\sigma_{vh}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 0,\\\sigma_{hv}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = 0,\end{array}\right|$ $\sigma_{hh}^{0}(\boldsymbol{k},\boldsymbol{k_{0}}) = \frac{|r_{h}(0)|^{2}}{\cos^{4}\theta_{2}} p_{s} \left(\boldsymbol{\gamma} = \tan\theta_{0}\right),$ • SSA1: $\sigma_{pq}(\boldsymbol{k}, \boldsymbol{k_0}) = \frac{1}{\pi} \left| \frac{2q_k q_0}{Q_z} \mathbb{B}_{pq}(\boldsymbol{k}, \boldsymbol{k_0}) \right|^2 \exp\left[-Q_z^2 W(0) \right]$ $\int \left\{ \exp\left[+Q_z^2 W(\boldsymbol{r}) \right] - 1 \right\} \, \exp\left[-j \boldsymbol{Q}_{\boldsymbol{H}} \, \cdot \, \boldsymbol{r} \right] d\boldsymbol{r}$

with $W({f r})$ the surface height autocorrelation function

16/06/2020

PAYS DE LA

OUTLINE

I. Generalities

II. EM scattering from random rough surfaces: Asymptotic models

III.Applications to GPR

- 1. Context & Objective
- 2. EM modelling: Rigorous numerical method (PILE)
- 3. EM modelling: Analytical asymptotic method (SKA)
- 4. Time-domain response & Parameter estimation

Context

Pavement survey and control by NDT (Non-Destructive Testing) methods

To measure the thickness of the pavement layers

First layer of pavement: surface course (~ 5 cm)

French standards: VTAS/UTAS (Very / Ultra Thin Asphalt Surfacing)

Tendency: reduction of the thickness → Thickness: H ~ 2-3 cm

Radar NDT method for the pavement

Step frequency radar

16/06/2020

Diffusion radar par des surfaces rugueuses aléatoires

Pulse GPR

Context

General context of the study:

Electromagnetic wave scattering from *rough* **thin layers in GPR context**

- Better pavement thickness / medium permittivity estimation ⇒ to reduce the uncertainties
- Surface roughness estimation

Modeling of the EM scattering of GPR
 from the rough thin SC of the pavement: s₁, s₂
 Integration in signal processing algorithms

EM scattering modeling (random rough surfaces)

- one interface → air/SC interface:
 relatively well-known
- two interfaces → air/SC and SC/RB interfaces:
 active research

16/06/2020

Different possible approaches:

rigorous

- + 'exact'
- long computing time
- large memory space

- frequency domain: MoM, ...
- time domain: FDTD (GprMax), ...

 \Rightarrow Description of the problem to be solved (waves / surfaces & media)

16/06/2020

Configuration of the study

Configuration of the study (2D problems \rightarrow co-polarisations)

- **Monostatic** configuration, Normal incidence ($\theta_i = 0$), **Far-field** assumption
- Plane incident wave → Gaussian beam: Illumination width: ~ 100 mm ↔ L_{cA} ≈ 5-10 mm
 - \Rightarrow Variability of the backscattered echoes
- Frequency study (large frequency band: $B \approx 10 \text{ GHz}$)
- **Homogeneous media** (OK at $\theta_i = 0$ for this frequency range [Gentili and Spagnolini, TGRS, 2000])
- Statistical description of the rough surfaces \Rightarrow Realistic simulations:

16/06/2020

OUTLINE

I. Generalities

II. EM scattering from random rough surfaces: Asymptotic models

III.Applications to GPR

- 1. Context & Objective
- 2. EM modelling: Rigorous numerical method (PILE)
- 3. EM modelling: Analytical asymptotic method (SKA)
- 4. Time-domain response & Parameter estimation

FCND EXAMPLE M modelling: Simulation parameters

Simulation parameters – PILE method (MoM-based):

Media permittivities ϵ_r and conductivities σ :

 $\begin{cases} \epsilon_{r2} = 4.5 & - \sigma_2 = 5x10^{-3} \text{ S/m} \\ \epsilon_{r3} = 7.0 & - \sigma_3 = 1x10^{-2} \text{ S/m} \end{cases}$

 $\begin{array}{l} \mbox{Rough surfaces Σ_A and Σ_B characteristic values (σ_h and L_c)$:} \\ 1. σ_{hA} =$ **0.5** $mm - L_{cA} = 6.4 mm ; σ_{hB} =$ **1.0** $mm - L_{cB} = 15.0 mm \\ 2. σ_{hA} =$ **0.5** $mm - L_{cA} = 6.4 mm ; σ_{hB} =$ **2.0** $mm - L_{cB} = 15.0 mm \\ 3. σ_{hA} =$ **1.0** $mm - L_{cA} = 6.4 mm ; σ_{hB} =$ **2.0** $mm - L_{cB} = 15.0 mm \\ \end{array}$

Mean layer thickness H:

H = 20 mm

Radar central frequency f_0 and bandwidth B: $f_0 = 5.8 \text{ GHz} - B = 10 \text{ GHz}$ Incidence angle θ_i and polarization: $\theta_i = 0 \text{ deg.} - V$ polarization Monte-Carlo process: N = 1000 realizations Sampling step $\Delta x = \lambda_2/8$

16/06/2020

ECND PAE Modelling: Numerical results (PILE)

16/06/2020

ECND PALE M modelling: Numerical results (PILE)

Frequency behavior of the backscattered echoes (f \in [0.8; 10.8] GHz): Amplitude:

16/06/2020

ECND RE Modelling: Numerical results (PILE)

Frequency behavior of the backscattered echoes (f \in [0.8; 10.8] GHz): Amplitude:

16/06/2020

OUTLINE

I. Generalities

II. EM scattering from random rough surfaces: Asymptotic models

III.Applications to GPR

- 1. Context & Objective
- 2. EM modelling: Rigorous numerical method (PILE)
- 3. EM modelling: Analytical asymptotic method (SKA)
- 4. Time-domain response & Parameter estimation

Asymptotic computation of forward echoes s₁ and s₂:

Means: Scalar Kirchhoff-tangent plane Approximation (SKA)

Validity domain:

- Surface mean curvature radius: $R_c >> \lambda$
- Surface RMS slope: $\sigma_s << 1$

Mathematical expression of first echo s₁:

 $|s_{1,SKA}(f)| = |s_{1,flat}(f)| \times exp(-2 \operatorname{Ra}_{r,1}^{2}),$ with $\operatorname{Ra}_{r,1} = \operatorname{Ra}_{r12} = k_0 \sqrt{\varepsilon_{r1}} \sigma_{hA} \cos\theta_i$ \rightarrow "Ament model" (Ra_{r1}: Rayleigh roughness parameter)

Extension to second echo s₂:

$$|s_{2,SKA}(f)| = |s_{2,flat}(f)| \times exp(-2 Ra_{r,2}^{2}),$$

with $Ra_{r,2} = [2(Ra_{t12})^{2} + Ra_{r23}]^{1/2}$

 $\begin{bmatrix} Ra_{t12} = k_0 \sigma_{hA} | \sqrt{\epsilon_{r1}} \cos\theta_i - \sqrt{\epsilon_{r2}} \cos\theta_t | / 2 \\ Ra_{r23} = k_0 \sqrt{\epsilon_{r2}} \sigma_{hB} \cos\theta_t \end{bmatrix}$

16/06/2020

Asymptotic computation of forward scattered field – "coherent field":

Means: Scalar Kirchhoff-tangent plane Approximation (SKA)

Validity domain:

- surface mean curvature radius: $R_c >> \lambda$
- surface RMS slope: $\sigma_s \ll 1$

Demonstration main steps:

- Integral equations:
$$\forall \mathbf{R} \in \Omega_1, \ E_r(\mathbf{R}) = + \int_{\Sigma_A} d\Sigma_A \left(\underbrace{E_1(\mathbf{R}_A)}_{\partial N_A} - G_1(\mathbf{R}, \mathbf{R}_A) - G_1(\mathbf{R}, \mathbf{R}_A) \frac{\partial E_1(\mathbf{R}_A)}{\partial N_A} \right)$$

Kirchhoff-tangent plane approximation: $E(\mathbf{R}_{\mathbf{A}}) = [1 + r(\chi_i)]E_i(\mathbf{R}_{\mathbf{A}})$

$$\frac{\partial E(\mathbf{R}_{\mathbf{A}})}{\partial n} = i(\mathbf{K}_{\mathbf{i}} \cdot \mathbf{N}_{\mathbf{A}})[1 - r(\chi_i)]E_i(\mathbf{R}_{\mathbf{A}})$$

R_c

Scalar approximation: $r(\chi_i) \approx r(\theta_i)$ far-field $\Rightarrow \frac{E_r^{\infty}(\mathbf{R})}{E_0} = \frac{-e^{i(k_1R-\frac{\pi}{4})}}{\sqrt{8\pi k_1R}} 2k_1 f_r(\mathbf{K_i},\mathbf{K_r}) \int_{-L_A/2}^{+L_A/2} dx_A e^{i(\mathbf{K_i}-\mathbf{K_r})\cdot\mathbf{R_A}}$

16/06/2020

Asymptotic computation of forward scattered field – "coherent field":

Means: Scalar Kirchhoff-tangent plane Approximation (SKA)

Validity domain:

- surface mean curvature radius: $R_c >> \lambda$
- surface RMS slope: $\sigma_s << 1$

Evaluation of the so-called "coherent field" in the specular (forward) direction: - starts from the evaluation of the variations of the phase of the reflected field $\delta \varphi_{r12}$:

 $\delta \varphi_{r12} = 2 \, k_0 n_1 \, \delta \zeta_A \, \cos \theta_i$

- is derived after statistical average over the reflected field E_{r12} :

$$\langle E_{r12} \rangle = E_{flat} \langle e^{j \circ \varphi_{r12}} \rangle, \text{ with} \\ E_{flat} = r_{12}(\theta_i) E_{inc} \\ \langle e^{j \delta \varphi_{r12}} \rangle = \int_{-\infty}^{+\infty} e^{j \delta \varphi_{r12}} p(\zeta) d\zeta \\ \text{- for Gaussian statistics: } \mathcal{A}_1 = \langle e^{j \delta \varphi_{r12}} \rangle = e^{-\langle (\delta \varphi_{r12})^2 \rangle/2} = e^{-2Ra_{r12}^2}, \text{ with} \\ Ra_{r12} = k_0 n_1 \sigma_{hA} \cos \theta_i \text{: Rayleigh roughness parameter}$$

16/06/2020

Asymptotic computation of forward scattered field – "coherent field":

Means: Scalar Kirchhoff-tangent plane Approximation (SKA)

Validity domain:

- surface mean curvature radius: $R_c >> \lambda$
- surface RMS slope: $\sigma_s << 1$

Extension to the transmission through a random rough interface:

- starts from the evaluation of the variations of the phase of the transmitted field $\delta \varphi_{t12}$:

 $\delta \varphi_{t12} = k_0 \delta \zeta_A \left(n_1 \cos \theta_i - n_2 \cos \theta_t \right)$

- is derived after statistical average over the transmitted field E_{t12} : $\langle E_{t12} \rangle = E_{flat} \langle e^{j\delta \varphi_{t12}} \rangle$, with

 $E_{flat} = t_{12}(\theta_i) E_{inc}$ $\langle e^{j\delta\varphi_{t12}} \rangle = \int_{-\infty}^{+\infty} e^{j\delta\varphi_{t12}} p(\zeta)d\zeta$ - for Gaussian statistics: $\langle e^{j\delta\varphi_{t12}} \rangle = e^{-\langle (\delta\varphi_{t12})^2 \rangle/2} = e^{-2Ra_{t12}^2}$, with

 $Ra_{t12} = k_0 \sigma_{hA} |n_1 \cos \theta_i - n_2 \cos \theta_t|/2$

16/06/2020

Asymptotic computation of forward scattered field – "coherent field":

Means: Scalar Kirchhoff-tangent plane Approximation (SKA)

 $\Omega_1(\varepsilon_{rl})$ Extension to the reflection from a random rough layer 0 <u>– second-order contribution E_2 :</u> $\Omega_2(\varepsilon_{r^2})$ θ - variations of the phase of the reflected field $\delta \phi_2$: $\delta \varphi_2 = k_0 \delta \zeta_{A1} \left(n_1 \cos \theta_i - n_2 \cos \theta_m \right)$ $+ 2 k_0 n_2 \delta \zeta_{B1} \cos \theta_m$ $\Omega_{2}(\varepsilon_{-2})$ $+ k_0 \delta \zeta_{A2} \left(n_1 \cos \theta_i - n_2 \cos \theta_m \right)$ - mean field $\langle E_{t12} \rangle \rightarrow$ evaluation of $\langle e^{j\delta \varphi_2} \rangle$: <u>Hypothesis:</u> ζ_{A1} , ζ_{B1} , ζ_{A2} uncorrelated – Gaussian statistics: $\mathcal{A}_{2} = \langle e^{j\delta\varphi_{2}} \rangle = e^{-\langle (\delta\varphi_{2})^{2} \rangle/2}$ $\Rightarrow \langle (\delta \varphi_2)^2 \rangle / 2 = 2k_0^2 \sigma_{hA}^2 (n_1 \cos \theta_i - n_2 \cos \theta_m)^2 + 4k_0^2 n_2^2 \sigma_{hB}^2 \cos^2 \theta_m$ $= 2Ra_{t12}^{2} + Ra_{r23}^{2}$ with

 $Ra_{r23} = k_0 n_2 \,\sigma_{hB} \cos \theta_m$

16/06/2020

Simulation parameters: Pavement – calculation of first two echoes:

Media permittivities $\epsilon_{\rm r}$ and conductivities σ :

 $\begin{cases} \epsilon_{r2} = 4.5 & - \sigma_2 = 5x10^{-3} \text{ S/m} \\ \epsilon_{r3} = 7.0 & - \sigma_3 = 1x10^{-2} \text{ S/m} \end{cases}$

Rough surfaces Σ_A and Σ_B characteristic values (σ_h and L_c):

 $\begin{array}{ll} 1. \ \sigma_{hA} = \textbf{0.5} \ mm - L_{cA} = 6.4 \ mm \ ; & \sigma_{hB} = \textbf{1.0} \ mm - L_{cB} = 15.0 \ mm \\ 2. \ \sigma_{hA} = \textbf{0.5} \ mm - L_{cA} = 6.4 \ mm \ ; & \sigma_{hB} = \textbf{2.0} \ mm - L_{cB} = 15.0 \ mm \\ 3. \ \sigma_{hA} = \textbf{1.0} \ mm - L_{cA} = 6.4 \ mm \ ; & \sigma_{hB} = \textbf{2.0} \ mm - L_{cB} = 15.0 \ mm \\ \end{array}$

Mean layer thickness H:

H = 20 mm

Radar central frequency f_0 and bandwidth B: $f_0 = 5.8 \text{ GHz} - B = 10 \text{ GHz}$ Incidence angle θ_i and polarization: $\theta_i = 0 \text{ deg.} - V$ polarization Monte-Carlo process: N = 1000 realizations Sampling step $\Delta x = \lambda_2/8$

16/06/2020

Exaluation et Contrôle Non Destructifs ECND PAYS LOIRE EM modelling: Asymptotic modelling

Frequency behavior of the backscattered echoes ($f \in [0.8; 10.8]$ GHz): Amplitude:

16/06/2020

OUTLINE

I. Generalities

II. EM scattering from random rough surfaces: Asymptotic models

III.Applications to GPR

- 1. Context & Objective
- 2. EM modelling: Rigorous numerical method (PILE)
- 3. EM modelling: Analytical asymptotic method (SKA)
- 4. Time-domain response & Parameter estimation

Time response to a Ricker pulse

Evaluation et Contrôle Non Destructifs

Receiver height: 40 cm Ricker: $f_c = 2$ GHz and $f \in [0.05; 7]$ GHz LU: All echoes PILE: First and second echoes s_1 and s_2

Echo 1: <u>Good</u> agreement between analytical (SKA) and PILE Echo 2: <u>Satisfactory</u> agreement between analytical (SKA) and PILE PILE 1-2 = LU \Rightarrow only the first two echoes contribute

ECND PAYS EM modelling: Parameter estimation

Parameter estimation of approximate expression of echoes (exponential):

Method: Least mean squares error (LMSE)

16/06/2020

Electromagnetic Wave Scattering from Random Rough Surfaces

Asymptotic Models

WILEY

Nicolas Pinel and Christophe Bourlier

Electromagnetic Wave Scattering from Random Rough Surfaces – Asymptotic Models

Nicolas Pinel and Christophe Bourlier

Hardcover: 66€90 / E-book: 60€99

16/06/2020

SIE

Diffusion radar par des surfaces rugueuses aléatoires

Book

- W. Ament, "Toward a theory of reflection by a rough surface", IRE Proc., vol. 41, p. 142-146, 1953
- D. Barrick and W. Peake, "A review of scattering from rough surfaces with different roughness scales", Radio Science, vol. 3, p. 865–868, 1968
- T. Elfouhaily and C.-A. Guérin, "A critical survey of approximate scattering wave theories from random rough surfaces", Waves in Random Media, vol. 14, num. 4, p. R1-R40, 2004
- A. Fung, Microwave scattering and emission models and their applications, Artech House, Boston - London, 1994
- J. A. Kong, Electromagnetic wave theory, John Wiley & Sons, New York, 2nd edition, 1990
- J. Ogilvy, Theory of wave scattering from random surfaces, Institute of Physics Publishing, Bristol and Philadelphia, 1991
- E. Thorsos and D. Jackson, "Studies of scattering theory using numerical methods", Waves in Random Media, vol. 1, num. 3, p. 165–90, July 1991
- L. Tsang *et al.*, Scattering of Electromagnetic Waves (3 volumes), John Wiley & Sons, New York, 2000-2001

Questions?

16/06/2020