Elastic wave propagation in periodic media with helical symmetry
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@ Existence of wave modes

2/14
F. Treyssede Waves and helical symme




Justifying the existence of wave modes in curved media

Wave modes in a curved direction s:

o o e*s with k: wavenumber along s

% Fourier transform +ik(~)
@ separation of variables : the coefficients of equilibrium equations, including
boundary conditions, must not depend on s (or must be Al-periodic)

lllustrative example: elasticity equilibrium equations in curvilinear coordinates
. . . A . . . . 1
2 ikl
O':jj + r’mja"’f + rjmja"" + pw gUUj =f',avec: 0’ = C"ey, e = E(uk'l + Uk — rZum)

— the coefficients depend on the physical properties (here, p et C¥!) but also on the
Christoffel symbols Ffj fonction of the metric tensor

Sufficient conditions for wave modes

Q the cross-section does not vary with s (or is A/-periodic)
Q the physical properties remain constant with s (or are A/-periodic)

Q the metric tensor, (g); = g; - g does not depend on s

o0M 9o0M 60M)

where (g1,85,83) = (%, oy 0 o5 ) covariant basis of the curv. system (x,y,s)
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Some helical coordinate systems allowing a separation of variables

@ Coordinate system about a single helix (x, y,s):
OM(x, y,s) = R(s) + xN(s) + yB(s)

with (x, y): coord. in a cross-section normal to the helix . l,-'

1 0 —TYy

g=| 0 1 TX = fet(x,y) K
-1y 1x T2+ y?)+ (1 - kx)?

From a 3D structure to a 2D model (continuous sym. in s), and then to 2D /6 (discrete sym. in 6)
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Some helical coordinate systems allowing a separation of variables

@ Coordinate system about a single helix (x, y,s):
OM(x,y,s) = R(s) + xN(s) + yB(s) 1
with (x, y): coord. in a cross-section normal to the helix

1 0 —Ty
g=10 1 X = fet(x, y)
-1y 7x T2(x*+y?)+ (1 - kx)?

@ System of similar kind but polar (p, 6, s):
OM(p, 0,s) = R(s) + pcosON(s) + psin 6B(s)
with (p, 0): polar coord. in the cross-section

1 0 0
g= 1|0 p? 72p° = fct(p) sik =0
0 7202 712p% 4 (1 + Kkpcosh)?

4/14

F. Treyssede Waves and helical symmetry



9 “Bi-helical” coordinate system (s1, 2, r):

— relation between cylindrical and helical coordinates:
6= 2,—1"51 + 21?"52
z= %51 + %sz

— position vector OM(sy, s2, r) = re,(0) + ze,

Ly,> : helix steps along z
: steps measured along si >

0

0
1
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A bi-helical periodic pattern

(s1,52): helical coordinates
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9 Accounting for continuous helical symmetry
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The SAFE method: accounting for continuous translational symmetry

Variational formulation for 3D elastodynamics:
/ 5T CedV + / pdu’idV =0, with € = (Ly, + L,8/8z)u I
Q Q

Perform:

Q Fourier transform along t and z:
+oo +o0o .
ik, w) = / / u(z, t)e (2=wtdzdt
— 00 — 00

Q FE discretization of the cross-section (x, y):

. 3D waveguide of
= u(x,y,z,t)= NE(X,y)Uee'(kz_“)t) arbitrary
cross-section

Quadratic eigenvalue problem

K1 — WM + ik(Ky — KJ) 4+ kK2K3]U = 0

@ problem reduced on the cross-section only

@ solved for each frequency w, solution = guided modes (k,ﬁ‘:7 U,:,E) SAFE mesh
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Accounting for continuous helical symmetry

@ Strain tensor (covariant components): € = %(u,-J +uj i) — I'f.j.uk

@ Transformation into the orthonormal basis (N, B, T) (*):
€j — €ap (a7ﬁ =n, b7 t)
(*) more convenient because the helical covariant and contravariant bases are not orthogonal

=>Strain in Serret-Frenet basis:

€ = (Lxy + Ls0/0s)u with: u = [u, up ut]T, € = [enn €pp €tt 2€pp 2€nt 2€bt]T

(1 + kx)9/0x 0 0
0 (1 + kx)0/0y 0
Lo — 1 K 0 Tyd/9x — Tx9/dy
T Thex (1 + xx)0/0y (1 + xx)0/0x 0
Tyd/0x — 7x0/dy -7 —k + (1 + kx)9/0x
T Tyd/0x — Tx0/dy (14 kx)0/0y
0 0 O
0 0 O
. o o0 1
=50 0 o
1 0 O
0 1 O
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Multi-wire structures

What is the appropriate coordinate system for helical symmetry ?

C—

|

The seven-wire strand case

@ central wire: Cartesian system (k,7) = (0,0)

@ peripheral wires: helical systems with the same (x,7) BUT different helix
centrelines...

o seven-wire strand: TWISTING system (x = 0,7 = 27w /L # 0)

Existence of wave modes in a

y twisting system?
I AD % Q cross-section v’
s=Z 3 | B LS i )
o e S \ Q physical properties v’
x Q metric tensor v
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© Rotationally symmetric cross-sections
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Rotationally symmetric cross-sections

Rotational symmetry: non-translational, once again (k # 0,7 = 0)... but now the
symmetry is of discrete type = circular periodicity

/

N=2 N=3 N=4 N=5 ... N=co
Examples of rotational symmetry

@ Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

} IV
! i X\ =e* (iu: propagation
LIR constant)

straight periodicity, unit cell

@ In case of circular periodicity: AN =1 (N: order of rotational symmetry)

AYA
VAY

circular periodicity with N cells

for n even
for n odd
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Accounting for rotational symmetry in SAFE

Q Partition of dofs in SAFE:

{K; —w?M +ik(Kz — KI) + k?K3}U = F
U=[UUTUM"and F=[F] F] F]T

U.F,
Q Elasticity variables = U and F — vectorial fields written in the (x, y, s) frame!

Q.U, = AQU, (2a)

Q.Fr = —-2Q/F, (2b)

Q, ,: transformation of vector components (x,y) to polar (r,0)
Q Build the projection matrix R from Eq. (2a):

1 0
. . U,
U=R(nU, R(n)= 0 1|, U= .
n n L\(n)Q,lQI 0] {U,}

Q Trick: left multiply SAFE by R*

[K1(n)—w?M(n)+ik(Ka(n)—Ka(—n)T)+k2Ks(n)]0 = R(n)*F = 0 with (*) = R*(~)RJ

-1
notice that R(n)*F = [F/ + )\(n)le Q’F’i| = 0 from Eq. (2b)
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0 Accounting for discrete helical symmetry in two directions
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WEFEM: accounting for discrete helical symmetry in two directions

FE discretization of the unit cell:

(K — w?’M — iwC)U =
Apply:

Q Displacement boundary conditions of Floquet-Bloch type
(two-directional):

JRUp = 2JJU, JTUT = 2JfUp, JRgUrs = MJ[gUs
JrUir =X gUis,  JirUrr = MXad[gUss
with: A\ = etkibh Ao = elke b (ki1, k2: helical wavenumbers)

Q Force boundary conditions (by condensation of displacement)

Remark 1: displacement = vector — must be in the covariant basis

g1 ex . 2,’1" sin 6 2/71" cos 0
=1 I = 2,’" sinf  2%r cos @
g3 ez

T
cos 6

o Fs

sin 0
Remark 2: the unit cell is delimited by non-plane surfaces (helicoids)

Remark 3: ki and kp are not independent on eachother (ANZ)f

Mo g
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Unit cell
example
(a thick tube)

_\/‘;]
dofs

classification

(2D view)
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