
Elastic wave propagation in periodic media with helical symmetry

Fabien TREYSSÈDE
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Justifying the existence of wave modes in curved media

Wave modes in a curved direction s:

∝ e iks with k: wavenumber along s
∂(·)
∂s

Fourier transform
−−−−−−−−−−→ +ik(·)

separation of variables : the coefficients of equilibrium equations, including
boundary conditions, must not depend on s (or must be ∆l-periodic)

Illustrative example: elasticity equilibrium equations in curvilinear coordinates

σ
ij

,j
+ Γi

mjσ
mj + Γj

mj
σ
im + ρω

2
g
ij
uj = f

i
, avec : σ

ij = C
ijkl

ǫkl , ǫkl =
1

2
(uk,l + ul,k − Γm

klum)

→ the coefficients depend on the physical properties (here, ρ et C ijkl ) but also on the
Christoffel symbols Γk

ij
, fonction of the metric tensor

Sufficient conditions for wave modes

1 the cross-section does not vary with s (or is ∆l-periodic)

2 the physical properties remain constant with s (or are ∆l-periodic)

3 the metric tensor, (g)ij = gi · gj , does not depend on s

where (g1, g2, g3) = (∂OM
∂x

, ∂OM
∂y

, ∂OM
∂s

) : covariant basis of the curv. system (x , y , s)

3/14
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Some helical coordinate systems allowing a separation of variables

Coordinate system about a single helix (x , y , s):
OM(x , y , s) = R(s) + xN(s) + yB(s)
with (x , y): coord. in a cross-section normal to the helix

g =





1 0 −τy
0 1 τx

−τy τx τ2(x2 + y2) + (1− κx)2



 = fct(x , y)

From a 3D structure to a 2D model (continuous sym. in s), and then to 2D/6 (discrete sym. in θ)
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Some helical coordinate systems allowing a separation of variables

Coordinate system about a single helix (x , y , s):
OM(x , y , s) = R(s) + xN(s) + yB(s)
with (x , y): coord. in a cross-section normal to the helix

g =





1 0 −τy
0 1 τx

−τy τx τ2(x2 + y2) + (1− κx)2



 = fct(x , y)

System of similar kind but polar (ρ, θ, s):
OM(ρ, θ, s) = R(s) + ρ cos θN(s) + ρ sin θB(s)
with (ρ, θ): polar coord. in the cross-section

g =





1 0 0
0 ρ2 τ2ρ2

0 τ2ρ2 τ2ρ2 + (1 + κρ cos θ)2



 = fct(ρ) si κ = 0

From a 3D structure to a 2D model (continuous sym. in s), and then to 2D/6 (discrete sym. in θ)
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“Bi-helical” coordinate system (s1, s2, r):
– relation between cylindrical and helical coordinates:

{

θ = 2π
l1
s1 +

2π
l2
s2

z =
L1
l1
s1 +

L2
l2
s2

L1,2 : helix steps along z
l1,2 : steps measured along s1,2

– position vector OM(s1, s2, r) = rer (θ) + zez

g =











4π2r2+L21
l21

4π2r2+L1L2
l1 l2

0

4π2r2+L1L2
l1 l2

4π2r2+L22
l22

0

0 0 1











= fct(r)

A bi-helical periodic pattern
(s1,s2): helical coordinates

Example of bi-helical structure: chiral nanotube (discrete helical symmetry in s1 and s2)
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The SAFE method: accounting for continuous translational symmetry

Variational formulation for 3D elastodynamics:

∫

Ω
δǫTCǫdV +

∫

Ω
ρδuT üdV = 0, with ǫ = (Lxy + Lz∂/∂z)u

Perform:

1 Fourier transform along t and z :

û(k, ω) =

∫ +∞

−∞

∫ +∞

−∞

u(z , t)e−i(kz−ωt)dzdt

2 FE discretization of the cross-section (x , y):

⇒ u(x , y , z , t) = Ne(x , y)Uee i(kz−ωt)
3D waveguide of

arbitrary
cross-section

Quadratic eigenvalue problem

[K1 − ω2M+ ik(K2 −KT
2 ) + k2K3]U = 0

problem reduced on the cross-section only

solved for each frequency ω, solution = guided modes (k±n ,U±
n ) SAFE mesh
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Accounting for continuous helical symmetry

Strain tensor (covariant components): ǫij =
1
2
(ui,j + uj,i )− Γk

ij
uk

Transformation into the orthonormal basis (N,B,T) (*):
ǫij −→ ǫαβ (α, β = n, b, t)
(*) more convenient because the helical covariant and contravariant bases are not orthogonal

⇒Strain in Serret-Frenet basis:

ǫ = (Lxy + Ls∂/∂s)u with: u = [un ub ut ]T , ǫ = [ǫnn ǫbb ǫtt 2ǫnb 2ǫnt 2ǫbt ]
T

Lxy = 1
1+κx















(1 + κx)∂/∂x 0 0
0 (1 + κx)∂/∂y 0
κ 0 τy∂/∂x − τx∂/∂y

(1 + κx)∂/∂y (1 + κx)∂/∂x 0
τy∂/∂x − τx∂/∂y −τ −κ+ (1 + κx)∂/∂x

τ τy∂/∂x − τx∂/∂y (1 + κx)∂/∂y















Ls = 1
1+κx















0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0
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Multi-wire structures

What is the appropriate coordinate system for helical symmetry ?

The seven-wire strand case

central wire: Cartesian system (κ, τ) = (0, 0)

peripheral wires: helical systems with the same (κ, τ) BUT different helix
centrelines...

seven-wire strand: TWISTING system (κ = 0,τ = 2π/L 6= 0)

Existence of wave modes in a
twisting system?

1 cross-section X

2 physical properties X

3 metric tensor X
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Rotationally symmetric cross-sections

Rotational symmetry: non-translational, once again (κ 6= 0,τ = 0)... but now the
symmetry is of discrete type ⇒ circular periodicity

Examples of rotational symmetry

Reminder: Bloch-Floquet boundary conditions (see e.g. Mead JSV 1996)

straight periodicity, unit cell

Ur = λUl , Fr = −λFl

λ = eiµ (iµ: propagation
constant)

In case of circular periodicity: λN = 1 (N: order of rotational symmetry)

circular periodicity with N cells

λ(n) = ei2nπ/N

n =

{

−N
2
+ 1, ...,0, ..., N

2
for n even

−N−1
2

, ...,0, ..., N−1
2

for n odd
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Accounting for rotational symmetry in SAFE

1 Partition of dofs in SAFE:

{K1 − ω2M+ ik(K2 −KT
2 ) + k2K3}U = F

U = [UT
l UT

i UT
r ]

T and F = [FT
l FT

i FT
r ]

T

2 Elasticity variables = U and F → vectorial fields written in the (x , y , s) frame!

QrUr = λQlUl (2a)

QrFr = −λQlFl (2b)

Ql,r : transformation of vector components (x ,y) to polar (r ,θ)
3 Build the projection matrix R from Eq. (2a):

U = R(n)Ũ, R(n) =





I 0
0 I

λ(n)Q−1
r Ql 0



 , Ũ =

[

Ul

Ui

]

.

4 Trick: left multiply SAFE by R∗

[K̃1(n)−ω2M̃(n)+ik(K̃2(n)−K̃2(−n)T)+k2K̃3(n)]Ũ = R(n)∗F = 0 with (̃·) = R∗(·)R

notice that R(n)∗F =

[

Fl + λ(n)∗Q−1
l

QrFr

0

]

= 0 from Eq. (2b)
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WFEM: accounting for discrete helical symmetry in two directions

FE discretization of the unit cell:

(K− ω2M− iωC)U = F

Apply:

1 Displacement boundary conditions of Floquet-Bloch type
(two-directional):

JTRUR = λ1J
T
LUL, JTTUT = λ2J

T
BUB , JTRBURB = λ1J

T
LBULB

JTLTULT = λ2J
T
LBULB , JTRTURT = λ1λ2J

T
LBULB

with: λ1 = eik1∆l1 , λ2 = eik2∆l2 (k1, k2: helical wavenumbers)

2 Force boundary conditions (by condensation of displacement)

Remark 1: displacement = vector → must be in the covariant basis





g1
g2
g3



 = J
T





ex
ey
ez



 , J
T =







−

2πr
l1

sin θ 2πr
l1

cos θ
L1
l1

−

2πr
l2

sin θ 2πr
l2

cos θ
L2
l2

cos θ sin θ 0







Remark 2: the unit cell is delimited by non-plane surfaces (helicoids)

Remark 3: k1 and k2 are not independent on eachother (λN2
1 λ−N1

2 = 1)

x
y

z

Unit cell
example

(a thick tube)

uT

uB

uR

uL

uI

u
LT

u
LB

u
RB

u
RT

dofs
classification
(2D view)
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