

Approche inverse rapide pour la déconvolution d'images ultrasonores par une PSF variable

<u>Nans Laroche</u>^{a,b}, Ewen Carcreff^a, Sébastien Bourguignon^b, Jérôme Idier^b, Aroune Duclos^c

> ^a The Phased Array Company (TPAC), Nantes, France ^b Laboratoire des Sciences du Numériques de Nantes (LS2N), Nantes, France ^c Laboratoire d'Acoustique de l'Université du Maine (LAUM), Le Mans, France

> > GIS ENCD-PdL, Laval, France 29 Mars 2019

troduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives

Collaboration

Nans Laroche, Ewen Carcreff Imagerie, développement logiciel

Sébastien Bourguignon, Jérôme Idier *Problèmes inverses, traitement du signal*

Aroune Duclos Acoustique, expérimentations

Introduction ○●○○○○○○	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives

Imagerie ultrasonore

Contrôle Non Destructif

Imagerie médicale

Introduction	
00000000	

Méthode de focalisation en tout poin

Approche problèmes inverses

Résultats expérimentaux

Conclusions et perspectives

Technologie

1950s Inspection mono-élément

2010s *Pioneer*

3/29

1980s Premier système multi-voies 2000s Système d'imagerie médicale

Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux
0000000			

Conclusions et perspectives

Imagerie conventionnelle

Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
0000000				

Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
00000000				

Introduction ○○○○○○●○	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives

Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
000 0000				

Méthode de focalisation en tout point

Approche problèmes inverses

Résultats expérimentaux

Conclusions et perspectives 00

9/29

Imagerie FMC : Element 1/64

Méthode de focalisation en tout point

Approche problèmes inverses

Résultats expérimentaux

Conclusions et perspectives 00

10/29

Imagerie FMC : Element 10/64

Méthode de focalisation en tout point

Approche problèmes inverses

Résultats expérimentaux

Conclusions et perspectives

Imagerie FMC : Element 32/64

Méthode de focalisation en tout point

Approche problèmes inverses

Résultats expérimentaux

Conclusions et perspectives

Imagerie FMC : Element 64/64

Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
Total Focus	ing Method			

- Acquisition Full Matrix Capture (FMC) ou Full Synthetic Aperture (FSA)^[1] :
- Calcul de temps de vol : $\tau(i, j, x, z)$
- Reconstruction linéaire TFM de O à partir de y^[2] :

$$O_{\text{TFM}}(x, z) = \sum_{i=1}^{N_{\theta i}} \sum_{j=1}^{N_{\theta i}} \frac{y_{i,j}}{y_{i,j}} \Big(\tau(x, z, i, j) \Big)$$

^{1.} J.A. JENSEN et al. (2006). « Synthetic aperture ultrasound imaging ». In : Ultrasonics

^{2.} C. HOLMES, B. DRINKWATER et P. WILCOX (2005). « Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation ». In : NDT&E International

	.			
00000000	00000000	00000000	00	00
	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspecti

Imagerie conventionnelle vs Total Focusing Method

	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspect
00000000	00000000	00000000	00	00

Exemples d'application : Reconstruction utilisant des modes de rebond

Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspective
0000000			

Exemples d'application : Imagerie de pièces à surface complexe

• Détection de la surface et reconstruction avec un seul jeu de données en temps réel

Introduction 00000000	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
Limitations				

• Bande passante limitée ~> Imprécision, mauvaise résolution

• Défauts proches \rightsquigarrow Recouvrement

Critère de Rayleigh :
$$d_{\min} = \frac{0.61\lambda}{\sin(\theta)}$$

\sim Limite théorique de résolution de la méthode TFM $^{[3]}$

3. F. SIMONETTI (2006). « Localization of pointlike scatterers in solids with subwavelength resolution ». In : Applied Physics Letters

Introduction 00000000	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
Modèle dire	ect sur les données			

- Modèle de données linéaire PSF $h_{i,j}^{i_x,i_z}$ [4] : $\mathbf{y} = \mathbf{Ho} + \mathbf{n}$.
- Bande passante limitée des transducteurs ~ Problème mal posé
- Minimisation d'un critère des moindres carrés pénalisés^[5] :

$$J(o) = \left\| \mathbf{y} - \mathbf{H}o \right\|^2 + \phi(o)$$

4. N. LAROCHE et al. (2018). « An inverse approach for ultrasonic imaging by total focusing point for close reflectors separation ». In : 2018 IEEE International Ultrasonics Symposium (IUS). Kobe, Japan : IEEE
5. J. IDIER (2008). Bayesian Approach to Inverse Problems. London, U.K. : ISTE Ltd et John Wiley & Sons Inc

Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
Modèle dire	ect sur l'image TFM			

 Formulation d'un modèle direct dans l'espace image à partir des données TFM : ~> Problème de déconvolution à PSF variable

•
$$\boldsymbol{o}_{\mathsf{TFM}} = \mathbf{B}^T \boldsymbol{y}$$
 et $\boldsymbol{y} = \mathbf{H}\boldsymbol{o} + \boldsymbol{n}$. $\rightsquigarrow \boldsymbol{o}_{\mathsf{TFM}} = \mathbf{B}^T \mathbf{H}\boldsymbol{o} + \boldsymbol{n}$.

+ Réduction de la taille du problème.

- + Presque un problème de déconvolution.
- Perte d'information par rapport aux données temporelles.
- Minimisation d'un critère des moindres carrés pénalisés :

$$J(o) = \|o_{\mathsf{TFM}} - \mathbf{B}^{\mathsf{T}}\mathbf{H}o\|^2 + \phi(o)$$

Introduction 00000000	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
Calcul d'un	e PSF			

• $\mathbf{B}^T \mathbf{H} \in \mathbb{R}^{N_x N_z \times N_x N_z}$ contient l'image TFM associée à un réflecteur ponctuel pour chaque pixel.

Introduction 00000000	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
Modèle de	déconvolution à PSE y	variable		

• Complexité de calcul des PSF : $O(N_{el}^2 N_t (N_x N_z)^2) \rightarrow$ Problème de complexité et de stockage

 \implies Hypothèse : La variation spatiale des PSF est lente, on peut interpoler quelques PSF espacées dans l'image^[6].

Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
	00000000		

Calcul de convolution rapide par FFT

La PSF est approximée en tout point :

$$h_{\mathbf{r}_0}(\mathbf{r}) \approx \sum_{i=1}^{N_{\text{PSF}}} w_i(\mathbf{r}_0) h_i(\mathbf{r}).$$
 (avec $o_i(\mathbf{r}) = w_i(\mathbf{r}) o(\mathbf{r})$)

$$(\mathbf{H}_{s}\boldsymbol{o})(\boldsymbol{r}_{0}) = \sum_{\boldsymbol{r}} h_{\boldsymbol{r}}(\boldsymbol{r}_{0} - \boldsymbol{r}) o(\boldsymbol{r}) \approx \sum_{i=1}^{N_{\text{PSF}}} (h_{i} * o_{i})(\boldsymbol{r}_{0})$$

...

D'où

$$\mathbf{H}_{s}\boldsymbol{o} \approx \sum_{i=1}^{N_{\text{PSF}}} \mathbf{H}_{i} \mathbf{W}_{i} \boldsymbol{o} \text{ et } \mathbf{H}_{s}^{t} \boldsymbol{y} \approx \sum_{i=1}^{N_{\text{PSF}}} \mathbf{W}_{i} \mathbf{H}_{i}^{t} \boldsymbol{y},$$

où \mathbf{H}_i désigne la matrice de convolution discrète associée à la PSF h_i et \mathbf{W}_i est la matrice diagonale contenant les poids w_i .

ntroduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives

Résultats synthétiques

Sonde : contact, 64 elements, 5 MHz, pitch 0.5 mm Matériau : Vitesse 5000 m/s Défauts : Distance 0.5 mm Longueur d'onde : $\lambda = 1$ mm

Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives

Résultats synthétiques

(-) TFM(-) Inversion 1 PSF(--) Inversion 4 PSF

Introduction 00000000	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives
Résultats s	ynthétiques			

 Introduction
 Méthode de focalisation en tout point
 Approche problèmes inverses
 Résultats expérimentaux
 Conclusions et perspectives

 00000000
 000000000
 00
 00
 00

Séparation de 2 défauts proches 1.5 MHz

Sonde : contact, 128 éléments (32 utilisés) 1.5 MHz, pitch 2 mm Matériau : Aluminium Défauts : Side Drilled Hole (SDH) \varnothing 1.0 mm Longueur d'onde : $\lambda = 4.2$ mm Critère de Rayleigh : 0.97 λ PSF : Modèle d'écho gaussien

→ Rayleigh/4

• • • •				
Introduction	Méthode de focalisation en tout point	Approche problèmes inverses	Résultats expérimentaux	Conclusions et perspectives

Conclusions et perspectives

Conclusions :

- Approches problèmes inverses utilisant un modèle linéaire et de la parcimonie.
- Meilleures performances pour la séparation des défauts proches.

Autres applications possibles :

- Détection (débruitage, bruit de structure, etc.).
- Localisation de défauts.
- Modèles valides pour tout types d'imagerie (PWI, CWI, etc.).

Perspectives :

- Application à des cas réels de fissure proche de la surface.
- Application de modèles de propagation pour l'imagerie de matériau complexes.

00000000 00000000 0000000 00	00

Merci de votre attention

Nans Laroche

nans.laroche@tpac-ndt.com

