

Non Destructive Testing: 3D simulation of Inductive Thermography On Carbon Fiber Reinforced Polymers

A. Ba, H.K. Bui, G. Wasselynck, D. Trichet, <u>G. Berthiau</u>

and the MDE team of the Institute of Research in Electrical Energy of Nantes-Atlantique

University of Nantes, FRANCE

Composite lifecycle and induction

Multi-scale Modeling

SIBC + Voltage-constrained FEM

Some Applications

Conclusion

53% Composite

Airbus A350 XWB

- Cars, Aeronautics, ...
- 7 10%/year

Performances

- No corrosion
- High ratio resistance/weight

In France (2016)

- Composites : ~0,5M tons/ an
- Metal : ~18M tons/an

Large scale development

- Manufacturing Methods
- Material health evaluation (SHM- NDT)

Composite materials: sectors and growth

- Transport (cars or railways), buildings and aeronautics represent 62% of the production of composites.
- The arrival of composites in the new planes (Boeing 787 and Airbus 350) allowed to the aeronautics and aerospace to pass before petroleum sector.
- The growth potential is estimated around 10% by year between 2016 and 2021.

Composite material:

Reinforcements

• Support mechanical stress

Resine

- Maintaining of the reinforcements
- Repartition of the efforts

Particles
Short fibers
Long fibers

Image: Comparison of the state of the state

Stratified composites (CFRP : Carbon Fiber Reinforced Polymer)

Two families of composites

- Thermoplastic •
- Thermoset •

Composite lifecycle and induction

Multi-scale Modeling

SIBC + Voltage-constrained FEM

Some Applications

Conclusion

Need for heat throughout the lifecycle of the CFRP

Processes (hot air, heat fluid, electrical resistance,)

- Conduction heating
- Autoclave,
- Injection under presure in a mold, ...

UNIVERSITÉ DE NANTES

Limitations :

- Time of cycle,
- Consumption,
- Static processes.

Place of electromagnetic induction? Numerous advantages and few exploited (for a direct or indirect heating)

- Contactless,
- Surface or volume power,
- Fast transfert,
- Easy control,
- Repeatable, ...

Evolution of induction generators

Circulation of eddy currents in composites?

- Frequency <10Mhz => no capacitive effect
- Setting of inductor 0° and 90° lead to very different effects (circulation along z)
- No loop conduction intra-fiber
- Severe thermal contrainsts (delamination, broken fibers, ...)

The mastery of the industrial process control of CFRP needs the development of decision-making tools

- Accurate, fast-running with taking into account of movement
- Multi-physic, multi-scale, electrical percolation
- Taking into account of generators for range control

0.135

0.11

Induction heating for welding

- Elaboration method (Welding)
- Material Health Assessment (Non Destructive Testing and Evaluation)

Modeling tools: for physical phenomena behavior understanding

for inductor design

for welding parameters optimization (frequencies, s

0.05

Double curvature 3D structure welding bench

Induction heating for welding

Welding bench

NDT of welding

Feasability dmonstrated:

- Technologic ontrainsts of induction (materials, adaptation box, ...)
- Limitations => large thicknesses, focusing, dynamics, ...

Defects in stratified

• Dimensions from some $\mu m \rightarrow$ some mm

NDT methods

- Ultrasonic
- Eddy current
- Thermography
- Inductive thermography

Inductive Thermography

• Double mechanism of detection

- Perturbation of eddy currents
- Perturbation of thermal diffusion
- Global measurement
 - IR Camera

Objectifs recherchés

- Développement d'un outil de simulation
- Investigation de la capacité de détection de défaut par la méthode thermo-inductive

Induction heating for non destructive testing

- Elaboration method (Welding)
- Material Health Assessment (Non Destructive Testing and Evaluation)

Induction thermography

Image by Infrared camera

Pipeline

16

Induction heating for non destructive testing

- Elaboration method (Welding)
- Material Health Assessment (Non Destructive Testing and Evaluation)

Delamination between plies

Fibers rupture in a ply

Composite lifecycle and induction

Multi-scale Modeling

SIBC + Voltage-constrained FEM

Some Applications

Conclusion

Modelling Issues

Modelling Issues

Micro-scale

- Random behavior
- High anisotropy
- Apparition of contacts
- Numerical omplexity

Modelling Issues

Modelling Issues

30

From microscopic to mesoscopic (homogeneization)

Homogeneization approach

Homogeneization: keep information at global scale

Non periodic structure material

From mesoscopic to macroscopic

From mesoscopic to macroscopic

- Multi-layer anisotropic materials ٠
- Effect of stacking sequence ٠

Modelling Issues

Degenerated Edge Element for Thin and Anisotropic Material

Composite lifecycle and induction

Multi-scale Modeling

SIBC + Voltage-constrained FEM

Some Applications

Conclusion

SIBC + Voltage-constrained FEM

Modelling Issues

[[]T. Bayerl et al.]

- Massive and complex shape coil (inductor)
- Strong Skin Effect
- Calculation of Impedance

Surface Impedance Boundary Condition (SIBC)

+ Voltage-constrained Finite Element Model

SIBC + Voltage-constrained FEM

Surface Impedance Boudary Condition (SIBC)

SIBC + Voltage-constrained FEM

Voltage-constrained FEM

NDTonAIR

UNIVERSITÉ DE NANTES

Composite lifecycle and induction

Multi-scale Modeling

SIBC + Voltage-constrained FEM

Some Applications

Conclusion

Stratified CFRP Plate

- 16 plies
- Stacking sequence : [135 90 45 0 135 90 45 0 0 45 90 135 0 45 90 135]

Stratified CFRP Plate

• Inductor design to focus on interface layers.

Stratified CFRP Plate

Stratified CFRP Plate

UNIVERSITÉ DE NANTES

NDT Induction Thermography on Pipe

NDT Induction Thermography on Pipe

Experiment benchmark

- **1.** Induction generator
- 2. Impedance adaptation box
- 3. Composite plate
- 4. IR camera

Test case: plate with defects

- Fiber breakings
- Dlaminations
 - 3D view

300mm x 300mm

Configuration of control:

- 16 plies
- Quasi-isotropic layup
- 8 defects inside the 0° plies
- Length max 10mm x 10mm
- Thickness of a ply = 136µm
- Same thicknesses of the defects: 68µm ou 34µm

Control configuration

Absolute contrast Ca

- Shapes of defects are revealed
- For the **delaminations**
- For the **fibres breakings**

Taken into account of NOISE

- Accuracy of the IR camera
- Homogeneity of emissivity of material surface
- White noise with standard deviation

Parameters to be optimized

- Shape and dimensions of the inductor
- Frequency of the generator
- Time of heating
- Intensity of inductor current

- Frequency of the IR caméra
- Acquisition time
- ...

Conclusion

- Induction is well adaptated to the injection of power without contact in composites
- Need of predictive simulation code for design, dimensioning and optimization

Perspectives

Characterization, optimization, ..., toward electrical functional materials

Thank you !

