

Caractérisation de l'endommagement du béton polymère par émission acoustique

X. Yu⁽¹⁾, M. Bentahar⁽¹⁾, C. Mechri^(1,2), A. EL Mahi⁽¹⁾, R. EL Guerjouma⁽¹⁾, S. Montresor⁽¹⁾

(1) Laboratoire d'Acoustique de l'Université du Mans

(2) Centre de Transfert de Technologie du Mans

Journée Scientifique du 13 novembre 2018

Composite Materials

- Composite materials: matrix + reinforcement
- Advantage : High strength to weight ratio
- Applications
 - Carbon fiber composite : aerospace...
 - Glass fiber composite : automobile...
 - Polymer concrete : civil engineering...

Need to monitor the health of composite materials

Acoustic Emission (AE)

- Advantage : monitoring the damage in time
- But : Material was damaged

- Acoustic Emission (AE)
 - Advantage : monitoring the damage in time
 - But : Material was damaged

When a composite material is already cracked

How can we checking the cracks by AE without destroying this material?

- Acoustic Emission (AE)
 - Advantage : monitoring the damage in time
 - But : Material was damaged

When a composite material is already cracked

How can we checking the cracks by AE without destroying this material?

Dynamic acoustic emission

Nonlinear regime of material + monitoring the acoustic activity with AE

- Studied Specimen and characterization
- Mechanical test monitored with Acoustic Emission
- Dynamic Acoustic Emission
- Results and discussion
- Conclusion and outlook

Studied Specimen

Polymer concrete

Constituents :

Epoxy resin, sand : 0.4 mm, gravel : 2 mm

	resin	gravel	sand
Sample I	40%	30%	30%
Sample II	40%	60%	0%

• Dimension : 200 X 40 X 40 (mm³)

A quasi-static test monitored with AE ==> The damage mechanisms

Damage mechanisms

Characterization of samples

Attenuation of samples

Experimental set-up of attenuation measurement

Exemple of sample I under measurement with 2 protocoles

- 2 sensors of 1MHz
- · One glass to mesure the reference signal
- Protocole :
 - 1. mesure references signals
 - 2. mesure finals signals
 - 3. Compare their FFT, calculate attenuation

Why use references signals

==> To avoid the changement of wave forme in source sensor

- Source :
 - Amplitude : 20 Vpp

LAUM Université

• Frequency : 35 - 600 kHz

Exemple of source at 35kHz and its FFT

Attenuation of samples

• Results

	resin	gravel	sand
Sample I	40%	30%	30%
Sample II	40%	60%	0%

- Attenuation increases in frequency
- The gravel increased attenuation at 35 and 400 kHz

Mechanical test monitored with AE

The three point bending test monitored with AE

- Quasi-static mechanical test (Sample I)
- Force AE hits (Sample I)

- AE System : Mistras PIC-2
- · 2 types of samples

	resin	gravel	sand
Sample I	40%	30%	30%
Sample II	40%	60%	0%

An AE signal and its temporal features

Mechanical test monitored with AE

The three point bending test monitored with AE

• AE System : Mistras PIC-2

• 2 types of samples

	resin	gravel	sand
Sample I	40%	30%	30%
Sample II	40%	60%	0%

Quasi-static mechanical test

$\boldsymbol{\cdot}$ The temporal and spectral features

	Dimension	Property
	dB	Amplitude (PA)
	micro second	Duration (D)
 Common temporal features 	micro second	Rise time (RT)
	micro second/V	RA (RT/PA)
		Counts (CNT)
New frequency-based feature	aJ	Energy (E)
	kHz	Frequency centroid (FC)
$WF = \sqrt{FP^2 + FC^2}$	kHz	Peak frequency (PF)

LAUM De Mans Université

K-means classification of AE hits

Classification by k-means

Principal Component Analysis reduced the number of

features from 7 to 4

- $\boldsymbol{\cdot}$ Then, the classification is made using k-means analysis
- Three classes of AE signals

LAUM De Mans Université

AE hits were recorded during the damage process of materiel

• Why should we damage the materiel in order to get AE hits ?

Develop dynamic AE measurements as NDT&E technique to link macroscopic observations to the excited micro-mechanisms

Dynamic acoustic emission •

- Micro-cracked polymer concrete
- Excitation around the bending mode (240 Hz)
- Four steps in the protocol
- Test monitored with AE

			Dynamics	, AE	
	No excitation	Linear vibration	Conditioning	Passive relaxation	
	0 V	50 mv	2 V	0 V	
	2 hours	9 minutes	9 minutes	16 hours	
	l	Π		IV	
		THEAM			
	No AE sig	Inal	AE sigi	nals appear	12

CI

- Slow Dynamics Ruyer [1999] TenCate [2008] Remillieux [2016]
 - Conditioning
 - · A high level of constant excitation around a resonance mode of the material
 - During conditioning time : Johnson [2005] Scalerandi [2017]
 - Quality factor decreases ==> Increase in attenuation
 - Resonance frequency decreases ==> Decrease of the elastic modulus (softening)
 - Relaxation
 - Material recovers to its original property after 10³ 10⁵ s
 - **Relaxation time:** monitoring the health state of the material Bentahar [2009]

Beginning of conditioning

- Slow Dynamics Ruyer [1999] TenCate [2008] Remillieux [2016]
 - Conditioning
 - · A high level of constant excitation around a resonance mode of the material
 - During conditioning time : Johnson [2005] Scalerandi [2017]
 - Quality factor decreases ==> Increase in attenuation
 - Resonance frequency decreases ==> Decrease of the elastic modulus (softening)
 - Relaxation
 - Material recovers to its original property after 10³ 10⁵ s
 - **Relaxation time:** monitoring the health state of the material Bentahar [2009]

- Slow Dynamics Ruyer [1999] TenCate [2008] Remillieux [2016]
 - Conditioning
 - · A high level of constant excitation around a resonance mode of the material
 - During conditioning time : Johnson [2005] Scalerandi [2017]
 - Quality factor decreases ==> Increase in attenuation
 - Resonance frequency decreases ==> Decrease of the elastic modulus (softening)
 - Relaxation
 - Material recovers to its original property after 10³ 10⁵ s
 - **Relaxation time:** monitoring the health state of the material Bentahar [2009]

t= 9 mins

- Slow Dynamics Ruyer [1999] TenCate [2008] Remillieux [2016]
 - Conditioning
 - · A high level of constant excitation around a resonance mode of the material
 - During conditioning time : Johnson [2005] Scalerandi [2017]
 - Quality factor decreases ==> Increase in attenuation
 - Resonance frequency decreases ==> Decrease of the elastic modulus (softening)
 - Relaxation
 - Material recovers to its original property after 10³ 10⁵ s
 - **Relaxation time:** monitoring the health state of the material Bentahar [2009]

- Slow Dynamics Ruyer [1999] TenCate [2008] Remillieux [2016]
 - Conditioning
 - · A high level of constant excitation around a resonance mode of the material
 - During conditioning time : Johnson [2005] Scalerandi [2017]
 - Quality factor decreases ==> Increase in attenuation
 - Resonance frequency decreases ==> Decrease of the elastic modulus (softening)
 - Relaxation
 - Material recovers to its original property after 10³ 10⁵ s
 - **Relaxation time:** monitoring the health state of the material Bentahar [2009]

- Slow Dynamics Ruyer [1999] TenCate [2008] Remillieux [2016]
 - Conditioning
 - · A high level of constant excitation around a resonance mode of the material
 - During conditioning time : Johnson [2005] Scalerandi [2017]
 - Quality factor decreases ==> Increase in attenuation
 - Resonance frequency decreases ==> Decrease of the elastic modulus (softening)
 - Relaxation
 - Material recovers to its original property after 10³ 10⁵ s
 - Relaxation time: monitoring the health state of the material Bentahar [2009]

End of the relaxation

Step IV : Relaxation

- Slow Dynamics Ruyer [1999] TenCate [2008] Remillieux [2016]
 - Conditioning
 - · A high level of constant excitation around a resonance mode of the material
 - During conditioning time : Johnson [2005] Scalerandi [2017]
 - Quality factor decreases ==> Increase in attenuation
 - Resonance frequency decreases ==> Decrease of the elastic modulus (softening)
 - Relaxation
 - Material recovers to its original property after 10³ 10⁵ s
 - Relaxation time: monitoring the health state of the material Bentahar [2009]

Results and discussion

- AE signal during the test
- Conditioning

Local resonances may be the source of AE signals

Passive relaxation (3 classes of AE signal)

Three classes of AE signals during passive relaxation

Different kinds of damages have different relaxation rates

15

Results and discussion

LAUM DE Le Mans Université

They have strong similarity with signal during quasi-static test

- Mechanical test followed by AE :
 - Three classes of AE signal distinguished
 - High amplitude signals during final crack : need a relevant criterion for the separation of events

- A non-destructive testing technique (defect detection)
- No crack ==> No AE signal during dynamic AE
- $\boldsymbol{\cdot}$ A link between damage mechanisms and non-linear behavior
- Conditioning: continuous signals (local resonances of the defect)
- Relaxation: AE signals appear; strong similarity with signals cracking matrix and Debonding of interface

Works to do...

The link between quasi-static test and dynamic AE

