

C. Lanos¹, A. Hussain⁴ et M. Lawrence⁴

¹ Université de Rennes, Laboratoire de Génie Civil et Génie Mécanique ²Université de Nantes, Institut de Recherche en Génie Civil et Mécanique ³CAVAC Biomatériaux ⁴Université de Bath, Departement d'Architecture et de Génie Civil

> Journées thématiques du GIS ECND PdL 13 Novembre 2018

Introduction

Matériels & Méthodes 0000000 Résultats 000000

Introduction

Matériels & Méthodes 0000000 Résultats 000000 Conclusion

Objectif

Développer une méthode afin de tester la résistance au développement des moisissures de composite biosourcés.

Viel et al

Durabilité de matériaux biosourcés

Matériels

Matériels & Méthodes •000000 Résultats 000000

ISOUDE: Projet Européen qui a pour but le développement d'un isolant biosourcé.

- Caractérisation hydrique, thermique et mécanique des composites;
- Uniquement les formulations les plus prometteuses subissent les tests de durabilité.

Matériels

Matériels & Méthodes

Résultats 000000

- Masse volumique apparente comprise entre 170 et 280 kg/m³;
- Le traitement des granulats et les liants utilisés ont une influence sur le pH de surface des composites.

Introduction 00

Méthode

Résultats 000000

2 Pesée une fois par jour

00	

Matériels & Méthodes 0000000

Digital Image Correlation (DIC)

Image f

Image q

Champ de déplacement : x = X + u

Paramétrage : x = F(X + T)

T est un vecteur de translation défini par deux paramètres :

•
$$\lambda_1 = T_1$$

•
$$\lambda_2 = T_2$$

F est le tenseur gradient de la transformation défini par 4 paramètres :

- $\lambda_3 = F_{11} 1$
- $\lambda_4 = F_{12}$
- $\lambda_5 = F_{21}$
- $\lambda_6 = F_{22} 1$

Fonction à minimiser : $\varphi(\lambda_i) = \sum_{\mathbf{X} \in Z_i} (g(\mathbf{x}) - f(\mathbf{X}))^2$

e) Erreur de corrélation entre les images a & c

d) Erreur de corrélation entre les images a & b

Matériels & Méthodes 0000000 Résultats ●00000

Analyse visuelle

Norme BSI EN ISO 846 - 1997

0: 0 %; 1: moisissures visibles au microscope; 2: < 25 %; 3: < 50 %; 4: < 75 %; 5: > 75 %.

- Après 7 jours : Augmentation de la masse \rightarrow 20 % de teneur en eau;
- C1 : 54 % de teneur en eau à la fin de l'essai;
- C2, C3, C4 et C5 : Perte de masse après 7 jours d'essai;
- C5 : Perte de masse la plus importante.

- C2, C3, C4 et C5 : Perte de masse linéaire avec de bons coefficients de corrélation ;
- C5 : Perte de masse la plus importante (4.28 %);
- C2, C3 et C4 : Perte de masse similaire (~ 1.15 %);
- C3 : Perte de masse la moins importante \rightarrow Imperméabilité à l'eau de la paraffine.

ntroduction 00	Matériels & Mét 0000000		Résultats 000●00		
Digital Im	age Corr	elation (
C1	C2	C3	C4	C5	
12 semaines				<u>3 cm</u>	
Carte des moisissures (en blanc)					
0 %	28.29 %	23.29 %	35.72 %	79.43 %	
0*	3.13*	2.93*	3.43*	5.00*	
Valeurs déterminées par inspection visuelle					
0.50 ± 0.76	3.13 ± 0.83	2.88 ± 0.64	3.38 ± 0.74	5.00 ± 0.00	

*Sur la même échelle que la norme BSI EN ISO 846 - 1997.

Phase : I : de latence, II : exponentielle, III : de ralentissement et IV : stationnaire

Matériels & Méthodes 0000000 Résultats 00000●

Microscopie optique

- Toutes ces moisissures sont potentiellement allergènes car elles contiennent des substances inflammatoires;
- AR, PB et ER : Colonies primaires;
- LM : Colonies secondaires.

Légende :

- AR : Aspergillus Ruber;
- PB : Penicillium Brevicompactum ;
- ER : Eurotium Rubrum ;
- LM : Leptosphaeria maculans.

- Analyse d'image : évaluation rapide et quantitative de la croissance fongique ;
- Suivi massique : informations sur les dégradations subies à long terme;
- Un pH élevé confère une excellente résistance fongique.
- Augmenter la durée du test pour évaluer les dégradations des composites par les colonies secondaires.

Viel et al

Merci de votre attention.

Des questions?

M. Viel, F. Collet, Y. Lecieux, M. L. M. François, V. Colson, C. Lanos, A. Hussain and M. Lawrence, Resistance to mold development assessment of bio-based building materials, *Composites Part B*, 158, February 2019, p. 406-418.